**CHEM 304** 

CHUKA



UNIVERSITY

# UNIVERSITY EXAMINATIONS

# EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

#### CHEM 304: ANALYTICAL CHEMISTRY

**STREAMS:** 

TIME: 2 HOURS

8.30 A.M - 10.30 A.M

#### **DAY/DATE: MONDAY 4/12/2017**

#### **INSTRUCTIONS:**

#### • Answer question one and any other two questions

#### **QUESTION ONE**

(a) Explain how the following chromatography methods address the general elution problem;

| (i) Liquid chromatography.                 | [1mark] |
|--------------------------------------------|---------|
| (ii) Gs chromatography.                    | [1mark] |
| (iii) Super critical fluid chromatography. | [1mark] |

(b) List the types of samples applicable for the gas chromatographic detectors listed below: Flame ionization, thermal conductivity, electron capture, mass spectrometer (ms) thermionic, electrolytic conductivity (hall), photoiozation, fourier transform IR(FTIR).

[4marks]

(c) Given the following electrochemical cell:

Ni (s)/Niso<sub>4</sub> (0.0025M) // KI0<sub>3</sub>(0.10M) / Cu(*IO*<sub>3</sub>)<sub>2</sub>(s) / cu(s)

(i) If the cell potential is 0.512V, find KsP for Cu  $(IO_3)_2$  (ignore activity coefficients)

$$cu^{2+}+2e^{-} \rightleftharpoons cu(s) E^{0} = +0.337 V^{\text{at}} 25^{\circ} C$$
  
 $Ni^{2+}+2e^{-} \rightleftharpoons Ni(s) E^{0} = -0.250 V \text{ at } 25^{\circ} C$  [2marks]

(ii)Identify potential sources of errors in the above calculation associated with measuring the cell potential. [4½ marks]

(d) A constant potential of -1.0v was applied to mixture containing  $cu^{2+}$  and  $cd^{2+}$ , causing both cadmium and copper ions to be reduced and deposited as metals. The voltage was then slowly reduced as shown by voltammogram given below.

(i)State with a reason the metal which is oxidized first.[1marks](ii) State with a reason the ion which had a higher concentration in the original mixture.<br/>[1mark][1mark](e) Explain the principle of operation of an ion selective electrode.[2marks](ii) How does a compound electrode differ from an ion selective electrode?<br/>[1mark][1mark](iii)A fluoride ion selective electrode has a selectivity coefficient  $K_{f^-}^{pot} OH^- = 0.1$ <br/>. Calculate the change in electrode potential when  $1.0 \ge 10^{-4} MF^-$  at PH 5.5 is raised to<br/> $p^H 10.5$ .[2½ marks]

#### **CHEM 304**

(f) State the advantages of the inductivity coupled plasma compared with a flame in aatomic spectroscopy. [2marks]

(ii) Why is an internal standard most appropriate for quantitative analysis using atomic spectroscopic technique when unavoidable sample losses are expected during sample preparation? [1mark]

(iii) List four different excitation methods employed in emission spectroscopy.

[2marks]

| (g)(i) Outline the steps involved in the analytical process. | [3marks] |
|--------------------------------------------------------------|----------|
| (ii) Explain the terms precision and accuracy.               | [1mark]  |

## **QUESTION TWO**

(a) (i) The following data was obtained in a set of replicate analysis of the nickel content of an alloy in percent as 7.72, 7.86, 7.54, 4.58, 7.62, 7.66 and 7.05. Assess the data by Q-test for a confidence limit or 95%. Rejection quotient at 95% are given in the table below.

Rejection quotient Q, at 95% confidence limits.

| No of              | 3     | 4     | 5     | 6     | 7     | 8     |
|--------------------|-------|-------|-------|-------|-------|-------|
| observation        |       |       |       |       |       |       |
| Confidence         | 0.970 | 0.829 | 0.710 | 0.625 | 0.568 | 0.526 |
| level ( $Q_{95}$ ) |       |       |       |       |       |       |

[3marks]

(ii) The protein content of a sample determined from five analysis using a new method of analysis are 46.2%, 45.8%, 46.4%, 45.9% and 46.3%. The protein content of the same sample was determined to be 46.4% by a standard method of analysis. Comment on the acceptability of the new method at 95% level. The value of t for confidence v degrees of freedom for 95% confidence level are given below.

| V            | 1      | 2     | 3     | 4     | 5     | 6     | 7     | 8     |
|--------------|--------|-------|-------|-------|-------|-------|-------|-------|
| Confidence   | 12.706 | 4.303 | 3.182 | 2.776 | 2.571 | 2.447 | 2.365 | 2.306 |
| level at 95% |        |       |       |       |       |       |       |       |

(iii) A calibration exercise for an a tomic absorption method to be used in the determination of a metal yielded the following results.

| Reference  | 0     | 2     | 4     | 6     | 8     | 10    | 12    |
|------------|-------|-------|-------|-------|-------|-------|-------|
| mg/kg      |       |       |       |       |       |       |       |
| absorbance | 0.021 | 0.050 | 0.090 | 0.126 | 0.173 | 0.210 | 0.247 |

- (I) Determine the equation of the least squares straight line through these points in the for m y =  $[m(\pm Um] x+[b(\pm Ub)]$  with a reasonable number of significant figure at 95% confidence limit. [9<sup>1</sup>/<sub>2</sub> marks]
- (II) An unknown metal sample gave absorbance of mean 0.157 for five replicate calculate the number of mg  $kg^{-1}$  of metal in the unknown and estimate its uncertainty at 95% confidence limit. The value of t for 95% confidence limit are given below. [2½ marks]

| Degree of  | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|------------|------|------|------|------|------|------|------|------|
| freedom    |      |      |      |      |      |      |      |      |
| Confidence | 12.7 | 4.30 | 3.18 | 2.78 | 2.57 | 2.45 | 2.36 | 2.31 |
| level 95%  |      |      |      |      |      |      |      |      |

(III) Calculate correlation coefficient.

[1mark]

## QUESTION THREE (20MARKS)

(a) (i)Chromatograms of compounds A and B were obtained at the same flow rate with two column of equal length. The value of  $t_m$  is 1.3 min in both cases.

For the separation of A and B by column 2(i) explain how the flow rate can be changed to improve resolution if broadening is mainly due to longitudinal diffusion.[½ mark]

#### **CHEM 304**

(ii) If broadening is mainly due to the finite equilibrium time, how should the flow rate be changed to improve the resolution. [½ mark]

(ii)If broadening is mainly due to multiple flow paths, what effect will flow rate have on the resolution? [½ mark]

(b) (i) Why does plate weight depend on linear velocity, not volume flow rate?

(ii) Why is longitudinal diffusion a more serious problem in gas chromatography than in liquid chromatography? [1mark]

(iii)In chromatography, why is the optimal flow rate greater if the stationary phase particle size is smaller? [½ mark]

(iv)A mixture of benzene toluene and methane was injected into a gas chromatograph. Un retained methane gave a sharp spike in 42S, whereas benzene required 251S and toluene was eluated in 333s. Find the adjusted retention time and retention factor for each solute and the relative retention. [3½ mark]

(v)A band from a column eluted at a rate of 1.35 ml/min has a width at half height of 0.272 min. The sample was applied as a sharp plug with a volume of 0.30 ml, the detector volume is 0.20ml and the connecting tubing is 30cm long with a 0.050 cm diameter. Find the variance introduced by injection, detecting and connecting tubing assuming a solute diffusion coefficient of  $1.0 \ge 10^{-9} m^2/s$ . What would  $w_{\frac{1}{2}}$  (in time units) be if broadening occurred only on the column? [6<sup>1</sup>/2 mark]

(c) (i) When would you use split, splitless or on column injection in gas chromatography? [2½ mark]

| (ii) Explain how solvent trapping work in splitless. |  |  |  |  |  |  | [1mark] |  |  |
|------------------------------------------------------|--|--|--|--|--|--|---------|--|--|
|                                                      |  |  |  |  |  |  |         |  |  |

(iii)Why is splitless injection used with purge and trap sample preparation ? [<sup>1</sup>/<sub>2</sub> mark]

(iv)Why does mobile phase strength increase as solvent becomes less polar in reversed phase chromatography whereas mobile phase strength increases as solvent becomes more polar in normal phase chromatography? [½ mark]

(II) Why are the relative eluent strengths of solvents in adsorption chromatography fairly independent or solute?

(v)(I) Why is high pressure needed in HPLC. [1/2 mark]

| (II) For a given column why | do smaller particles give a higher plate number. | [½ mark] |
|-----------------------------|--------------------------------------------------|----------|
|-----------------------------|--------------------------------------------------|----------|

(III)What is a bonded phase in liquid chromatography? [<sup>1</sup>/<sub>2</sub> mark]

(vi) (I) Why are HPLC particles porous.

[½ mark]

(II) Why are particles with 60- to 120 A° stationary phases used to separate polypeptides and proteins? [½ mark]

(vii) Why are silica stationary phases generally limited to operating in the  $p^H$  range 2-8? Why does the silica in figure below have improved stability at low  $p^H$ ?

[½ mark]

# QUESTION FOUR (20MARKS)

4.(a) Figure below shows a temperature profile for a furnance atomic absorption experiment. Explain the purpose of each different part of the neating profile.

(ii) Explain how the following background correction technique work in atomic spectroscopy.

| (I)<br>(II)<br>(III) | Beam chopping .<br>Deuterium lamp.<br>Zeeman [6marks]                                 | [3½ marks]<br>[3marks]     |
|----------------------|---------------------------------------------------------------------------------------|----------------------------|
| . /                  | tate the advantage of Zeeman background correction compared with deground correction. | uterium lamp<br>[1½ marks] |
| (b                   | )(i)Describe the main limitation of the normal dc polarography.                       | [1½ marks]                 |
| ,                    | i) List modern polagraphic techniques which has taken care of the abov<br>pcis).      | e limitation<br>[3marks]   |

\_\_\_\_\_

\_\_\_\_\_