CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN CHEMISTRY

CHEM 110: INOGARNIC CHEMISTRY I

STREAMS: B.Sc (BIOCHEM), B.Sc (BIOMED), BED (SCIE) B.Sc (GEN)

TIME: 2 HOURS

DAY/DATE: THURSDAY 7/12/2017 8.30 A.M - 10.30 A.M

INSTRUCTIONS:

• Answer Question ONE and any other TWO Questions

• Do not write on the question paper

QUESTION ONE: [30 MARKS]

(a) (i) State the law of definite proportions.

[1 Mark]

(ii) Calculate the percent composition of Cu, Fe and S in CuFeS₂

- [3½ Mark]
- (b) A sample of a compound contains 5.60 g N, 14.2 g Cl, and 0.800 g H. Determine the simplest formula of the compound. [3½ Marks]
- (c) (i) Calculate the molarity of 29.0 g of ethanol (C₂H₅OH) in 545 mL of solution. [3 Marks]
 - (ii) Water is added to 25.0 mL of a 0.866 M KNO₃ solution until the volume of the solution is exactly 500 mL. Calculate the molar concentration of the final solution. [1½ Marks]
- (d) State the postulates of Bohr atomic theory.

[3 Marks]

- (e) Hydrogen atoms absorb energy such that the electrons are excited to the energy level n=7. The electrons then undergo the following transitions: (1) n=7 to n=1; (2) n=7 to n=2 and n=2 to n=1.
 - (i) Determine which transition will produce a photon with the shortest wavelength.

[½ Mark]

CHEM 110

(ii) Calculate the wavelength of the photon emitted when an electron move n = 2 energy levels.	es from $n = 7$ to [2 Marks]
(f) State whether the following set of quantum numbers (n, l, m_l , m_s) are possible in an atom. (i) $(2, 0, 0, +\frac{1}{2})$ (ii) $(1, 1, 0, +\frac{1}{2})$ (iii) $(0, 0, 0, -\frac{1}{2})$ (iv) $(2, 1, -2, +\frac{1}{2})$	for an electron [2 Marks]
(g) Write the ground state electronic configuration of each of the following species (i) Si (ii) Fe^{2^+} (iii) Se^{2^-}	s. [3 Marks]
(h) Write the Lewis structures of the following molecules or ions (central atom is a	underlined) [7 Marks]
(ii) <u>Cl</u> O4	
(iii) $\underline{\mathbf{B}}\mathbf{F}_{3}$	
$(iv)\underline{N}H_{4}^{+}$	
QUESTION TWO [20 MARKS] (a) (i) Calculate the frequency of electromagnetic radiation with a wavelength of 4 (ii) Calculate the wavelength of a neutron traveling at a speed of 4.15 km/s	178 nm. [1½ Marks] [2 Marks]
(b) Discuss the four quantum numbers that describe the position of electrons in an	
(c) Determine the maximum number of electrons that can be contained in:(i) 2s orbital(ii) 2p subshell	[7½ Marks]
(iii)Second shell	[2 Marks]
(d) Draw orbital diagrams for the following elements(i) Nitrogen	
(ii) Nickel	[2 Marks]
 (e) Discuss the following properties in the periodic table; (i) Ionization energies (ii) Atomic radii (iii) Electron affinity 	[5 Marks]

CHEM 110

QUESTION	THREE	[20 MA	RKS]
----------	-------	--------	------

(a) State the postulates of Dalton's atomic theory.

[3½ Marks]

(b) Calculate the number of hydrogen atoms in 39.6 g of ammonium sulfate, (NH₄)₂SO₄

[3 Marks]

- (c) Yttrium-90 is used in the treatment of cancer, particularly non-Hodgkin's lymphoma:
 - (i) Determine the number of protons, neutrons and electrons in an atom of Y-90 [1½ Marks]
 - (ii) Determine the nuclear symbol for Y-90.

[1/2 Mark]

- (d) Strontium has four isotopes with the following masses: 83.9134 amu (0.56%), 85.9094 amu (9.865%), 86.9089 amu (7.00%), and 87.9056 amu (82.58%). Calculate the average atomic mass of strontium. [2 Marks]
- (e) Lead is a heavy metal that remains in the bloodstream, causing mental retardation in children. It is believed that 3 x 10⁻⁷ g of Pb in 1.00 mL of blood is a health hazard. Calculate the number of atoms present in 3 x 10⁻⁷ g of lead. [2 Marks]
- (f) Dimethylhydrazine is composed to carbon, hydrogen and nitrogen atoms. Determine the molecular formula of dimethylhydrazine give that its simplest formula is CH₄N and molar mass is 60.10 g/mol. [1½ Marks]
- (g) An ethanol water solution is prepared by dissolving 10.00 mL of ethanol, CH₃CH₂OH, (d=0.789 g/mL). Calculate the concentration of ethanol in this solution expressed as:
 - (i) Mass percent

(ii) Mole fraction

[6 Marks]

OUESTION FOUR

- (a) Consider the following species: NO₂F; CO₃²⁻; and SF₄
 - (i) Write the Lewis structures of the species (central atom is underlined)

[6 Marks]

(ii) Determine the molecular shapes of the species

[3 Marks]

(iii)Determine the polarity of the NO₂F molecule.

[1 Mark]

(iv) Determine the hybridization of carbon in CO₃²

[1 Mark]

(b) Explain, with the aid of formal charges, which Lewis structure is more likely to be correct for Cl₂O molecule. [3 Marks]

(c) Discuss with the aid of suitable examples, the van der Waals forces that hold molecules together. [6 Marks]