CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN MATHEMATICS (BIOSTATISTICS)

MATH 842: MEASURE THEORY AND PROBABILITY

STREAMS:

TIME: 3 HOURS

2.30 P.M - 5.30 P.M

DAY/DATE: THURSDAY 14/12/2017

INSTRUCTIONS:

- Answer any three questions
- Do not write on the question paper

QUESTION ONE: (20 MARKS)

- Define the following terms: a)
 - σ -algebra i)
 - Borel σ -algebra ii)
 - Measurable set iii)
- Let $\{\varepsilon_i : i \in I\}$ be a collection of σ -algebras. Show that how that $\bigcap_{i \in I} \varepsilon_i$ is also a σ -algebras. [7 marks] **b**)
- Let $\mathcal{B} = \mathcal{B}(\mathbb{R})$ be the borel algebra of \mathbb{R} , *R* be the ring of half-open intervals and $I = \{(a, b]: a < b\}$ c) be the set of all half-open intervals. Show that $\sigma(R) = \sigma(I) = \mathcal{B}$. [8 marks]

QUESTION TWO: (20 MARKS)

- Define the following terms: a)
 - i) Set function
 - Probability measure ii)
 - Continuous set function iii)
- Let ε be a ring on E and $\mu: \varepsilon \to [0, \infty]$ be an additive set function. Show that if μ is countably b) additive, then μ is continuous at all $A \in \varepsilon$. [10 marks]

QUESTION THREE: (20 MARKS)

- Prove that there exists a unique Borel measure μ on $(\mathbb{R}, \mathcal{B})$ such that $\mu((a, b]) = b a$ for all a) $a, b \in \mathbb{R}$ with a < b. [10 marks] [4 marks]
- Describe an independent σ -algebra. b) (i)
 - Let $\mathcal{E}_1, \mathcal{E}_2 \in \mathcal{E}$ be π -systems and suppose that $\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1)\mathbb{P}(A_2)$ whenever $A_1 \in \mathcal{E}_1$, (ii) $A_2 \in \varepsilon_2$. Show that $\sigma(\varepsilon_1)$ and $\sigma(\varepsilon_2)$ are independent. [6 marks]

QUESTION FOUR (20 MARKS)

- Describe the following terms as used in measure theory a)
 - i) Measurable function

[2 marks]

- [2 marks] [2 marks]
- [1 mark]
- [1 mark]
- [4 marks]
- [5 marks]

	ii)	ε -simple function	[4 marks]	
	iii)	Distribution function	[4 marks]	
	iv)	Almost everywhere convergence	[3 marks]	
b)	Prov	Prove the Kolmogorov's 0-1 law, that is, if $\{x_n\}$ is a sequence of independence variable		
	tail e	ail event has probability 0 or 1, and any T- measureable random variable Y is almost surely constan		
			[7 marks]	