CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN MATHEMATICS (PURE)

MATH 814: OPERATOR THEORY 1 STREAMS:

TIME: 3 HOURS

DAY/DATE: WEDNESDAY 13/12/2017

2.30 P.M – 5.30 P.M

INSTRUCTIONS:

- Answer any three questions
- Do not write on the question paper

QUESTION ONE: (20 MARKS)

- (a) (i) Prove that if *S* and *T* are two positive self adjoint linear operators on complex Hilbert space *H* then their sum is also positive. (1 mark)
 (ii) Hence prove that if two bounded self adjoint linear operators *S* and *T* on complex Hilbert space *H* are positive and commutate, then their product is positive. (8marks)
- (b) Define a positive square root of a self adjoint linear operator *P* Hilbert space *H*. Hence show that for a self adjoint bounded operator *P*,

$$|| Px || \le || P ||^{\frac{1}{2}} \langle Px, x \rangle^{\frac{1}{2}}$$
 (3marks)

- (c) Let P ∈ B(X). Show that PP* and P*P are positive self adjoints and their spectra are real and does not contain negative values.
 (3 marks)
- (d) If $T_n, S_n \in B(X) \forall n \in \mathbb{N}$ and $T, S \in B(X)$ such that $T_n \to T, S_n \to S$. Prove that $T_n S_n \to TS$ (5 marks)

QUESTION TWO: (20 MARKS)

(a) Let Pbe a projection on a Hilbert space H. Prove that

- (i) $||P|| \le 1$: ||P|| = 1 iff $P(H) \ne \{0\}$
- (ii) There exists a closed linear subspace M of H such that $P = P_M$ or $P_M(H) = M$

(3 marks)

(3 marks)

- (b) (i) Let P₁ and P₁ be projections on a Hilbert space H. Then prove that their sum P = P₁ + P₂ is a projection on H iff Y₁ = P₁(H) and Y₂ = P₂(H) are orthogonal. (4 marks)
 (ii) Prove that a bounded linear operator P: X → X on a Hilbert space H is a projection iff P is self adjoint and idempotent. (6 marks)
- (c) Let *H* be a Hilbert space, *M* a linear closed subspace of *H* and $y \in H \setminus M$. Prove that there exists a unique projection $P_v \in M$ such that $|| y P_v || = Inf\{|| y x || : x \in M\}$ (4 marks)

QUESTION THREE: (20 MARKS)

- (a) Let U be a partial Isometry in B(H). Show that U^*U is an orthogonal projection. (4 marks)
- (b) Let H be a Hilbert space. Prove that the following statements on a Unitary linear operator U are equivalent
 - (i) $U = UU^*U$
 - (ii) $P = U^*U$ is a projection

determined by the inner product function

(iii) $U/ker^{\perp}U$ is an isometry (5 marks)

(c) (i) Suppose $x_n (k = 1, 2, ..., n)$ and $y_j (j = 1, 2, ..., m)$ be elements in an inner product space $(\mathcal{Y}, <, >)$ and $\alpha_k, \beta_j \in K$. Show that $\langle \sum_{k=1}^n \alpha_k x_k, \sum_{j=1}^m \beta_j y_j \rangle = \sum_{k=1}^n \sum_{j=1}^m \alpha_k \overline{\beta_j} \langle x_k, y_j \rangle$ (4 marks)

(d) State and prove the Cauchy-Bunyakowski-Schwarz inequality in inner product spaces

(4 marks)

(4 marks)

QUESTION FOUR: (20 MARKS)

(a) Let $A = \begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix}$. Determine the spectrum and eigen space of A. (4 marks)

(b) Prove that all matrices representing a given linear operator $T: X \to X$ on a finite dimensional normed space X relative to various bases for X have the same eigen values. (7 marks)

(c) Define the numerical rangeNum(T) of an operator *T* on a Hilbert space *H*. Hence prove that for any $T \in B(X)$ the spectrum of T is contained in the closure of the numerical range

(4 marks)

(d) (i) When is a bounded linear operator $T: X \to X$ on a normed space X said to satisfy the Fredholm alternative? (4 marks)

MATH 814

(ii) Define a Hilbert- Schmidt norm of an operator $T \in B(H_1, H_2)$ where H_1, H_2 are separable Hilbert spaces. (1 mark)