CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN MATHEMATICS (PURE)

MATH 814: OPERATOR THEORY 1 STREAMS:

DAY/DATE: WEDNESDAY 13/12/2017

INSTRUCTIONS:

- Answer any three questions
- Do not write on the question paper

QUESTION ONE: (20 MARKS)

(a) (i) Prove that if S and T are two positive self adjoint linear operators on complex Hilbert space H then their sum is also positive.
(ii) Hence prove that if two bounded self adjoint linear operators S and T on complex Hilbert space H are positive and commutate, then their product is positive.
(8marks)
(b) Define a positive square root of a self adjoint linear operator P Hilbert space H. Hence show that for a self adjoint bounded operator P,

$$
\begin{equation*}
\|P x\| \leq\|P\|^{\frac{1}{2}}\langle P x, x\rangle^{\frac{1}{2}} \tag{3marks}
\end{equation*}
$$

(c) Let $P \in B(X)$. Show that $P P^{*}$ and $P^{*} P$ are positive self adjoints and their spectra are real and does not contain negative values.
(d) If $T_{n}, S_{n} \in B(X) \forall n \in \mathbb{N}$ and $T, S \in B(X)$ such that $T_{n} \rightarrow T, S_{n} \rightarrow S$. Prove that $T_{n} S_{n} \rightarrow$ TS

QUESTION TWO: (20 MARKS)

(a) Let P be a projection on a Hilbert space H. Prove that
(i) $\quad\|P\| \leq 1:\|P\|=1$ iff $P(H) \neq\{0\}$
(ii) There exists a closed linear subspace M of H such that $P=P_{M}$ or $P_{M}(H)=M$
(3 marks)
(b) (i) Let P_{1} and P_{1} be projections on a Hilbert space H. Then prove that their sum $P=P_{1}+P_{2}$ is a projection on H iff $Y_{1}=P_{1}(H)$ and $Y_{2}=P_{2}(H)$ are orthogonal.
(4 marks)
(ii) Prove that a bounded linear operator $P: X \rightarrow X$ on a Hilbert space H is a projection iff P is self adjoint and idempotent.
(c) Let H be a Hilbert space, M a linear closed subspace of H and $y \in H \backslash M$. Prove that there exists a unique projection $P_{y} \in M$ such that $\left\|y-P_{y}\right\|=\operatorname{Inf}\{\|y-x\|: x \in M\} \quad$ (4 marks)

QUESTION THREE: (20 MARKS)

(a) Let U be a partial Isometry in $B(H)$. Show that $U^{*} U$ is an orthogonal projection. (4 marks)
(b) Let H be a Hilbert space. Prove that the following statements on a Unitary linear operator U are equivalent
(i) $\quad U=U U^{*} U$
(ii) $P=U^{*} U$ is a projection
(iii) $U / \mathrm{ker}^{\perp} U$ is an isometry
(c) (i) Suppose $x_{n}(k=1,2, \ldots, n)$ and $y_{j}(j=1,2, \ldots, m)$ be elements in an inner product space $(\mathcal{Y},<,>)$ and $\alpha_{k}, \beta_{j} \in K$. Show that

$$
\left\langle\sum_{k=1}^{n} \alpha_{k} x_{k}, \sum_{j=1}^{m} \beta_{j} y_{j}\right\rangle=\sum_{k=1}^{n} \sum_{j=1}^{m} \alpha_{k} \bar{\beta}_{j}\left\langle x_{k}, y_{j}\right\rangle
$$

(ii) Prove that every inner product space is a normed linear space with respect to the norm determined by the inner product function
(d) State and prove the Cauchy-Bunyakowski-Schwarz inequality in inner product spaces

QUESTION FOUR: (20 MARKS)

(a) Let $A=\left(\begin{array}{ll}2 & -4 \\ 1 & -3\end{array}\right)$. Determine the spectrum and eigen space of A .
(b) Prove that all matrices representing a given linear operator $T: X \rightarrow X$ on a finite dimensional normed space X relative to various bases for X have the same eigen values.
(c) Define the numerical range $\mathrm{Num}(T)$ of an operator T on a Hilbert space H. Hence prove that for any $T \in B(X)$ the spectrum of T is contained in the closure of the numerical range
(d) (i) When is a bounded linear operator $T: X \rightarrow X$ on a normed space X said to satisfy the Fredholm alternative?
(ii) Define a Hilbert- Schmidt norm of an operator $T \in B\left(H_{1}, H_{2}\right)$ where H_{1}, H_{2} are separable Hilbert spaces.

