BOTA 111

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (BIOCHEMISTRY), BACHELOR OF EDUCATION (SCIENCE) BACHELOR OF SCIENCE IN NATURAL RESOURCES AND BACHELOR OF SCIENCE IN WILDLIFE

BOTA 111: GENERAL GENETICS

STREAMS: BScBiol (Y1S1), BScBioc (Y1S1), BED Sc. (Y1S1), BSc NARE (Y2S1) & BSc Wildlife (Y2S1) TIME: 2 HOURS

DAY/DATE: FRIDAY 8/12/2017

INSTRUCTIONS:

- Answer all the Questions in Section I and any ONE in Section II
- Use of calculators and statistical tables is allowed
- Do not write anything on the question paper

SECTION I: [50 MARKS]

- 1. Explain the following terms;
 - (i) Submetacentric chromosome
 - (ii) Sex-limited traits
 - (iii)Epigenesis
 - (iv)Homologous chromosome
- 2. The following three pairs of alleles exist in an organism, +/x, +/y and +/z. Each mutant allele is recessive to its wild-type allele (+). A testcross between heterozygous females and homozygous males yields the following results:

+++=30	x + + = 0
+ + z = 32	x + z = 430
+ y + = 441	x y + = 27
+ y z = 1	x y z = 39

- (i) List the classes that are parental types.
- (ii) List the classes that are as a result single and double crosses. [2 Marks]

[8 Marks]

[1 Mark]

8.30 A.M - 10.30 A.M.

BOTA 111

	(iii)	How are the members of the allelic pairs distributed in the heterozygous fer	nales? [1 Mark]
	(iv)	Give the sequence of the three genes.	[1 Mark]
	(v)	Calculate the map distance between (a) the first and second genes, and (b) and third genes?	the second [3 Marks]
3.	Explai	n criss-cross inheritance in Drosophila melanogaster.	[5 Marks]
4.	Accord each hu be foun (i) Pro (ii) An (iii)Pro (iv)Me (v) S s	ling to some cytophotometric measures, the amount of DNA in a diploid uman cell is made up of 5.6 picograms ($5 \times 10^{-12} g$) of DNA. How much D and in the following stages? ophase of mitosis aphase II of meiosis ophase II of meiosis staphase I of meiosis tage of mitosis	nucleus of 'NA would [5 Marks]
5.	5. In cattle population, the frequency of hornless bull population is 16%. Hornle to recessive gene.		bull is due
	(a) (b)	Calculate the frequency of recessive and normal alleles. Calculate the genotypic frequencies at equilibrium	[4 Marks] [6 Marks]
6.	Outline	e point mutations that occur in DNA sequences encoding proteins.	[6 Marks]
7.	Descri	be briefly genes with multiple alleles.	[8 Marks]

SECTION II [20 MARKS]

- 8. In a crossing experiment using garden peas (Pisum sativum), a testcross between a homozygous recessive parent and heterozygote F_1 produced the following F_2 phenotypic classes:
 - 150 plants bearing round/yellow seeds
 - 430 plants bearing round/green seeds
 - 420 plants bearing wrinkled/yellow seeds
 - 145 plans bearing wrinkled/green seeds

Suggesting possible hypothesis, determine if the observed data supports your suggested hypothesis at 5% significant level. [20 Marks]

9.	Discuss the structure of the nucleic acids.	[20 Marks]
••••		• • • • • • • • • • • • • • • • • • •