CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN APPLIED STATISTICS

MATH 859: FINANCIAL TIME SERIES & RISK MANAGEMENT

STREAMS:

TIME: 3 HOURS

8.30 A.M - 10.30 A.M

DAY/DATE: THURSDAY 14/12/2017

INSTRUCTIONS:

• Answer any three questions

1. (a) Outline 5 properties of return series stylized fact in financial time series and risk management. [5marks]

(b) Suppose there are two assets of type A and type B. If type A is worth 10 million shillings with volatility of 10% per year and asset B is worth 40 million shillings with volatility of 8% per year, Calculate the VaR over the next 16 days with probability of 0.99 for

(i) Type A	[5marks]
(ii) Type B	[5marks]
(iii) Combined assets if the correlation between assets A and B is 0.3.	[3marks]

- (iii) Combined assets if the correlation between assets A and B is 0.3. [3marks]
- (iv) What is the benefit of holding a diversified portfolio of assets A and B. [2marks]
- 2. (a) Suppose that financial time series model is defined by

 $X_t = \mu + \alpha X_{t-1} + e_t$. where e_t is ii~ $(0, \sigma^2)$

Find the mean and variance of X_t .

(b) Let $X_t = \sqrt{\beta_0} + \beta_1 X_{t-1}^2$ be stationary ARCH (I) with

[9marks]

MATH 859

E $(x^4) = C < \infty$ and e_t being ii~ N(0,1) show that

$$E(X_t^4) = \frac{3\beta^2(1+\beta_1)}{(1-3\beta_1^2)(1-\beta_1)}$$
[11marks]

3. (a) Define generalized autoregressive conditional heterosietable (G ARCH) process of order (q, p). [4marks]

(b) Find the stationary variance for GARCH (1, 2) with $0 < \propto < 1$ [16marks]

4. (a) Outline 4 properties of coherent risk that must be fulfilled in risk management. [4marks]

(b) Given $\partial_t = \sqrt{\beta_0} + \beta_1 X_{t-1}^2$ for T = 1 of ARCH (I). Estimate β_0 and β_1 using ols or MLE method. [6marks]

(c) Consider a random variable X with p.d.f

$$f(x) = \begin{cases} e^{-x}, & x > 0\\ 0, & elsewhere \end{cases}$$

find the quartile of x where 0 is

(i)	0.95	[5marks]
(ii)	0.99	[5marks]

5. (a) Outline 5 limitation of VaR in risk management. [5marks]

(b) The generalized pareto distinguish function defined .

$$G_{\delta}, \beta(\mathbf{z}) = \frac{1}{\beta} \left[1 + \frac{\widehat{\delta}}{\beta} \mathbf{z} \right] - \frac{1}{\delta} - 1$$

Find $\hat{\beta}$ and $\hat{\delta}$ using MLE.

[8marks]

(c) Let $X_t = \mu + \propto X_{t-1} + e_t$ where $e_t \sim \text{iid} (0, \partial^2)$ and independent of X_t . Find a h steps forecast given X_t, X_t, X_{t-2} [7marks]