**MATH 812** 

**CHUKA** 



UNIVERSITY

# UNIVERSITY EXAMINATIONS

## **EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN MATHEMATICS (BIOSTATISTICS)**

## **MATH 812: FIELD THEORY**

**STREAMS: TIME: 3 HOURS** DAY/DATE: THURSDAY 14/12/2017 8.30 A.M - 11.30 A.M

#### **INSTRUCTIONS:**

- Answer any three questions
- Do not write on the question paper

#### **QUESTION ONE: (20 MARKS)**

| a) | Define the following terms:                    |                                                              |            |  |
|----|------------------------------------------------|--------------------------------------------------------------|------------|--|
|    | i)                                             | Ring                                                         | [4 marks]  |  |
|    | ii)                                            | Ideal                                                        | [2 marks]  |  |
|    | iii)                                           | Field                                                        | [2 mark]   |  |
| b) | Let $I$ be an ideal in a ring $R$ . Show that: |                                                              |            |  |
|    | i)                                             | R/l is a ring under coset addition and coset multiplication. | [10 marks] |  |
|    | ii)                                            | R/I is commutative if R is commutative                       | [1 mark]   |  |
|    | iii)                                           | R/I has a unit element if R has                              | [1 mark]   |  |
|    |                                                |                                                              |            |  |

#### **QUESTION TWO: (20 MARKS)**

- Show that every field is an integral domain [6 marks] a) Show that every finite integral domain is a field [8 marks] b)
- Show that multiplication cancellation laws hold in a ring R if and only if R has no divisors of zero. c)

[6 marks]

[2 marks]

#### **QUESTION THREE:** (20 MARKS)

- a) Describe the following terms as used in field theory:
  - Algebraic element [4 marks] i) ii) Splitting field [4 marks]
  - Algebraically closed field extension iii)
- Let K/F be a field extension and  $\alpha \in K$ . Show that  $\alpha$  is algebraic over F if  $[F(\alpha):F]$  is finite. b) [4 marks]
- Let K/F be an extension of fields and f an irreducible polynomial in F[t]. Show that if  $\alpha \in K$  is a root of f, c) then there exists an F-isomorphism  $\theta: F[t]/(f) \to F(\alpha)$  given by  $1 + (f) \mapsto \alpha$ . [6 marks]

#### **QUESTION FOUR (20 MARKS)**

# MATH 812

| a) | Describe the following terms as used in Galois Theory: |                                                                                          |               |  |  |
|----|--------------------------------------------------------|------------------------------------------------------------------------------------------|---------------|--|--|
|    | i)                                                     | Dependent Character                                                                      | [4 marks]     |  |  |
|    | ii)                                                    | Galois extension                                                                         | [3 marks]     |  |  |
|    | iii)                                                   | Conjugate field extension                                                                | [4 marks]     |  |  |
| b) | Let K/I                                                | F be a finite extension of fields. Show that the Galois group $G(K/F)$ is a finite group | and satisfies |  |  |
|    | [K:F]                                                  | $\geq  G(K/F) .$                                                                         | [4 marks]     |  |  |
| c) | Let K/I                                                | F be a finite extension of fields. Show that it is also Galois if $[K:F] =  G(K/F) $ .   | [5 marks]     |  |  |
|    |                                                        |                                                                                          |               |  |  |
|    |                                                        |                                                                                          |               |  |  |