

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (ECONOMICS \&STATISTICS) AND BACHELOR OF EDUCATION (ARTS \&SCIENCE)

MATH 326: NUMERICAL ANALYSIS

STREAMS:BSC(ECOSTAS) BED(ART\&SCI)
TIME: 2 HOURS
DAY/DATE: THURSDAY 14/12/2017
8.30 A.M - 10.30 A.M

INSTRUCTIONS:

1. (a) If $y(0)=1, y(2)=1$ and $y(3)=10$, find the polynomial associated with this data using lagranges polynomial and hence evaluate $f(1.5)$.
[5marks]
(b) Use Newton Raphson method to find the of $x^{3}-6 x+4=0$ between 0 and 1 to 5 decimal places . 4 iterations only.
[4marks]
(c) Approximately $\int_{0}^{2} \sqrt{x} \mathrm{dx} \quad$ with $\mathrm{n}=4$ to 5 decimal places using the surpsons $1 / 3$ rule.
[4marks]
(d) Apply the determinant form to find the linear approximating formula and use to estimate $\mathrm{f}(9.7)$.
[4marks]

x	9.5	11.0
y	2.2513	2.3979

(e) Briefly explain why polynomials are chosen to approximate functions.
[3marks]
(f) Solve the system using crammers rule.
$6 a+10.5 b=9.80$
$10.5 a+22.75 b=21.945$
[5marks]
(g) If $\mathrm{P}=\frac{6 x^{2} y}{z^{3}}$ and $\Delta \mathrm{x}=1.0 \times 10^{-3} \Delta \mathrm{y}=2.0 \times 10^{-3}$ and $\Delta \mathrm{z}=100 \times 10^{-3}$ compute the relative error in p given that $\mathrm{x}=\mathrm{z}=1$ and $\mathrm{y}=2$.
2. (a) Consider the values in the table below.

X	0	1	2	3
Y	0.00	0.84	1.82	0.42

(i) Construct the table of divided differences.
(ii) Use Newton's divided difference interpolation formula to obtain the polynomial for the given data based at x_{0}.
(iii) Compute $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=1.4$.
(iv) Use the secant method to find the real roots of the equation $\mathrm{x}=\cos \mathrm{x}$ to 4 decimal places taking $x_{0}=0.5$ and $x_{1}=1$ with 4 iterations.
[6marks]
(c) Solve the system of linear equations using Gauss Jordan's method of row reductions.

$$
\begin{aligned}
& x-y+z=-3.5 \\
& 2 x+3 y+2 z=8 \\
& 2 x-2 y+4 z=-12
\end{aligned}
$$

3. (a) Derive the Newton Raphson's formula for evaluating $\sqrt[3]{N}$ where N is a positive number and hence find $\sqrt{5}$ using 5 iterations.
(b) Compute and interpret the condition number for $\mathrm{f}(\mathrm{x})=$ Tan x at $\mathrm{a}=1.7$. [5marks]
(c) Consider the data in table below and use it to interpolate the value of y where $\mathrm{x}=1.91$ using the Newton's forward interpolation formula (NFIF)

X	1.7	1.8	1.9	2	2.1	2.2
$\mathrm{~F}(\mathrm{x})$	5.4739	6.0496	6.6859	7.3891	8.1662	9.025

4. (a) Compute a root of $x+\log x-2=0$ which lies between 1 and 2 to one decimal places using the Bisection method with 6 iteractions.
[7marks]
(b) Determine the maximum relative error for the function
$\mathrm{F}=3 x^{3} y^{2}+5 y^{2} z^{2}-7 x^{2} z^{2}+38$ for $\mathrm{x}=\mathrm{y}=\mathrm{z}=1$ and $\Delta \mathrm{x}=-0.05, \Delta \mathrm{y}=0.001$ and
$\Delta \mathrm{z}=0.02$.
(c) Consider the values in the table below

X	0.02	0.4	0.6	0.8
$\mathrm{~F}(\mathrm{x})=x^{4}$	0.0016	0.0256	0.1296	0.4096

(i)Write down the four point differentiation formula.
[1mark]
(ii)Use the four point formula to estimate $f^{\prime}(0.2)$ and $f^{\prime \prime}(0.4)$. [4marks]
5. (a) Show that $x^{3}-7 \mathrm{x}+14 \mathrm{x}-6=0$ has a root in the interval $[1,2]$ and hence find the root using the regula falsi method with 5 iterations.
[6marks]
(b) Compute Lagrange's cubic interpolation for the data in the table. [4marks]

X	1	2	3	4
$\mathrm{~F}(\mathrm{x})$	3	9	11	18

(ii) Use the polynomial in b (i) above to evaluate $\mathrm{f}(1.6)$ and $\mathrm{f}(3.2)$. [3marks]
(c) A root is rotating in a plane. The table fives the degree in radians through which the rod has turned.

t	0	0.2	0.4	0.8	1.0	1.0	1.2
θ	0	0.12	0.49	1.12	2.02	3.2	4.67

Using Newton's backwards interpolation formula (NBIF) find θ when $\mathrm{t}=0.9$. [7marks]

