## CHUKA



UNIVERSITY

UNIVERSITY EXAMINATIONS
EMBU CAMPUS
EXAMINATION FOR THE AWARD OF DIPLOMA IN EDUCATION (ARTS)

## MATH 0224: PROBABILITY AND STATISTICS II

STREAMS:
TIME: 2 HOURS
DAY/DATE:

## INSTRUCTIONS:

- Answer question one and any other two questions

1. (a) Define the following terms;
(i) Random variable
(ii) Discrete variable
(iii) Continuous variable
(iv) Sample space
(b) Let $X_{1}$ and $X_{2}$ have a joint probability distribution function

$$
\mathrm{F}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
x_{1}+x_{2} 0<1, & 0<x_{1}<1, \quad 0<x_{2}<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Obtain the following
(i) Marginal probability density of $X_{1}$ and $X_{2}$
(ii) Conditional p.d.f of $X_{1}$, given $X_{2}=x_{2}$ [3marks]
(iii) Probability of $\operatorname{pr}\left(X_{1}+X_{2} \leq 1\right)$
(c) Given the probability distribution function of a Poisson distribution as

$$
\mathrm{F}(\mathrm{x})=\left\{\begin{array}{cc}
\frac{\lambda^{x} e^{-\lambda}}{x!}, & x=0,1,2,3 \ldots \\
0, & \text { elsewhere }
\end{array}\right.
$$

## Obtain

(i) Moment generating function
(ii) Mean and variance
(d) A discrete random variable has the following probability mass function

| X | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{P}(\mathrm{X}=\mathrm{x})$ | 0.1 | a | 0.3 | b | 0.2 |

If $\mathrm{E}[\mathrm{X}]=5.2$
(a) Find the value of $a$ and $b$
(b) The mean and variance of X
2. (a) A certain couple was planning to have 7 children. Their chance of having a boy child is 0.8 . What is the chance of having.
(i) Exactly 2 boys
(ii) At least 2 boys
(b)If $g(x)$ is a function of the random variable $X$ defined by $g(x)=a+b x$, where $a$ and $b$ are constants. Show that the variance of the function $g(x)$ is given by $\operatorname{Var}[g(x)]=b^{2}$ var (x).
(c) A fair die is thrown once. Find the $1^{\text {st }}, 2^{\text {nd }}$ and the $3^{\text {rd }}$ factorial moments. [8marks]
3. (a) A CDF is given by $f(x)=\left\{\begin{array}{cc}1-e^{-2 x}, & x>0 \\ 0 & \text { elsewhere }\end{array}\right.$
(i) Derive the pdf .
(ii) Show that the derived function is a pdf.
(iii) Find $\mathrm{P}(2 \leq x \leq 3)$ [5marks]
(b)The random variable X has a probability mass function.

$$
\mathrm{P}(\mathrm{X}=\mathrm{x})= \begin{cases}\frac{x}{10} & x=1,2,3,4 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Compute $\mathrm{E}\left[5 X^{3}-2 X^{2}\right]$ [7marks]
4. (a) If the function is a probability density function.

$$
\mathrm{F}(\mathrm{x})=\left\{\begin{array}{cc}
\frac{2}{39}(1+x) & 4 \leq x \leq 7 \\
0, & \text { otherwise }
\end{array}\right.
$$

Calculate the probability that
(i) $\operatorname{Pr}(\mathrm{x}<5) \quad$ [3marks]
(ii) $\quad \operatorname{Pr}(5 \leq x \leq 6.5)$ [4marks]
(b) A continuous random variable X is said t have a normal distribution if the probability distribution function is given by
$\mathrm{F}(\mathrm{x})=\left\{\begin{array}{cc}\frac{1}{\sqrt{2 \pi \sigma}} e & -\frac{1}{2}\left(\frac{(x-\mu)^{2}}{\sigma^{2}}\right) \\ 0, & \text { elsewhere }\end{array}\right.$
(g) Derive the moment generating function and hence obtain the mean and variance of $x$.
[13marks]

