MATH 0224

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS EMBU CAMPUS

EXAMINATION FOR THE AWARD OF DIPLOMA IN EDUCATION (ARTS)

MATH 0224: PROBABILITY AND STATISTICS II

STREAMS:

TIME: 2 HOURS

DAY/DATE:

INSTRUCTIONS:

• Answer question one and any other two questions

- 1. (a) Define the following terms;
 - (i) Random variable
 - (ii) Discrete variable
 - (iii) Continuous variable
 - (iv) Sample space
 - (b) Let X_1 and X_2 have a joint probability distribution function

 $F(x_1, x_2) = \begin{cases} x_1 + x_2 \ 0 < 1 \ , & 0 < x_1 < 1, & 0 < x_2 < 1 \\ 0 & elsewhere \end{cases}$

Obtain the following

(i)	Marginal probability density of X_1 and X_2	[4marks]
(ii)	Conditional p.d.f of $X_{1,g}$ given $X_2 = x_2$ [3marks]	
(iii)	Probability of $pr(X_1 + X_2 \le 1)$	[3marks]

(c) Given the probability distribution function of a Poisson distribution as

[4marks]

$$F(x) = \begin{cases} \frac{\lambda^{x} e^{-\lambda}}{x!}, & x = 0, 1, 2, 3 \dots \\ 0, & elsewhere \end{cases}$$

Obtain

- (i) Moment generating function
- Mean and variance (ii)
- (d) A discrete random variable has the following probability mass function

Х	3	4	5	6	7			
P(X=x)	0.1	а	0.3	b	0.2			
If $E[X] = 5.2$								

(a)	Find the value of a and b	[4marks]
(b)	The mean and variance of X	[4marks]

- 2. (a) A certain couple was planning to have 7 children. Their chance of having a boy child is 0.8. What is the chance of having.
 - (i) Exactly 2 boys (ii) At least 2 boys

(b) If g(x) is a function of the random variable X defined by g(x) = a+bx, where a and b are constants. Show that the variance of the function g(x) is given by $Var[g(x)] = b^2 var$ (x). [4marks]

(c) A fair die is thrown once. Find the 1st, 2nd and the 3rd factorial moments. [8marks]

3. (a) A CDF is given by
$$f(x) = \begin{cases} 1 - e^{-2x}, & x > 0 \\ 0 & elsewhere \end{cases}$$

```
(i) Derive the pdf.
```

(ii) Show that the derived function is a pdf.

(iii) Find $P(2 \le x \le 3)$ [5marks]

(b)The random variable X has a probability mass function.

P (X = x) =
$$\begin{cases} \frac{x}{10} & x = 1,2,3,4 \\ 0, & elsewhere \end{cases}$$

[3marks] [5marks]

[4marks]

[4marks]

[3marks]

[5marks]

- (a) Compute $E[5X^3-2X^2]$ [7marks]
- 4. (a) If the function is a probability density function.

$$F(x) = \begin{cases} \frac{2}{39} \ (1+x) & 4 \le x \le 7\\ 0 \ , & otherwise \end{cases}$$

Calculate the probability that

- (i) $\Pr(x < 5)$ [3marks]
- (ii) $\Pr(5 \le x \le 6.5)$ [4marks]
- (b) A continuous random variable X is said t have a normal distribution if the probability distribution function is given by

$$F(\mathbf{x}) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma}} e & -\frac{1}{2} \left(\frac{(x-\mu)^2}{\sigma^2} \right) \\ 0, & elsewhere \end{cases}$$

(g) Derive the moment generating function and hence obtain the mean and variance of x. [13marks]
