CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

MATH 205: ELEMENTS OF SET THEORY

STREAMS:

TIME: 2 HOURS

11.30 A.M - 1.30 P.M

[2marks]

[2marks]

DAY/DATE: THURSDAY 14/12/2017

INSTRUCTIONS:

- Answer question one and any other two questions.
- Do not write on the question paper
- 1. (a) List the elements of the following sets where $\mathbb{N} = \{1, 2, 3, ...\}$
 - (i) A = {x:x $\epsilon \mathbb{N}$, x is even, x < 15}
 - (ii) $B = \{x: x \in \mathbb{N}, 4 + x = 3\}$
 - (b) Given that $U = \{1, 2, 3, \dots, 9\}$, $A = \{1, 2, 3, 4, 5\}$, $B = \{5, 6, 7, 8, 9\}$ and $C = \{4, 5, 6, 7\}$ find
 - (i)A ⊕B.
 - (ii) $A^c \cap B^c$ [2marks]
 - (c) Prove that $A \cup B = B \cup A$. [2marks]
 - (d) Determine the number of elements in the power set of $A = \{ days of the week \}$. [2marks]
 - (e) Define a well ordered set. [2marks]
 - (f) Given that f(x) = x² and g(x) = x +3, find ;
 (i) (fog) (x) [2marks]

(ii) (gof)(x)	[2marks]
(g) If $\mathcal{A} = \{\{1,2,3,4\}, \{2,3,4,5\}, \{3,4,5,6\}, \{3,4,7,8,9\}\}$, find;	
(i) $\cup \mathcal{A}$	
(ii) $\cap \mathcal{A}$	[4marks]
(h) Prove that $[0,1] \approx (0,1)$	[4marks]
(i) Consider the Hasse diagram of an ordered set A below;	

Find the,

(i)minimal and maximum elements of A.	[2marks]
(ii) First and last elements of A.	[2marks]

2. (a) Study the ordered set A represented below;

For each $a \in A$, let p(a) denote the set of predecessors of a, that is, $p(a) = \{x:x \le a\}$. Let P(A) the collection of all predecessor sets of A and let P(A) be an ordered set by inclusion. Draw the Hasse diagram for P(A). [8marks]

(b) Suppose A and B are ordered sets. Show that the product order on A x B defined by $(a,b) \leq (c,d)$ if $a \leq b$ and $b \leq d$ is a partial ordering on A x B. [10marks]

(c) Let $S = \{a,b,c,d,e,f,g\}$ be ordered as in the figure below and $Irt X = \{c,d,e\}$

Find the upper and lower bounds of X. [2marks]

3. (a) Let λ be any ordinal number. Prove that $\lambda + 1$ is the immediate successor of λ . [5marks]

(b) Prove that if A and B are well ordered sets and:

$$S = {x:x \in A, s(x) \approx s(y) \text{ where } y \in B}$$

 $T = \{y: y \in B, s(y) \approx s(x) \text{ where } x \in A\}$

Then S is similar to T.

(c) Given that
$$g(x) = \frac{2x-3}{5x-7}$$
, find $g^{-1}(x)$. [5marks]

4. (a) Prove that
$$(U_i A_i)^c = \bigcap_i A_i^c$$
. [5marks]

(b) In a survey of 60 people, it was found that ; 25 read the daily nation, 26 read standard , 26 read the people, 9 read both the nation and the people, 11 read both the nation and standard, 8 read the standard and the people and 3 read all the three newspapers.

[10marks]

(i) Find the number of people who read at least one of the newspapers. [3marks]

(ii) With N,S and P representing the people who read the nation, standard and people respectively draw a venn diagram with its 8 regions filled. [4marks]

(iii) Find the number of people who read exactly one newspaper. [2marks]

	(c) Prove that a countable union of finite sets is countable.	[6marks]
5.	(a) For each $m \in P$, let A_m be the subset of P given by	
	$A_m = \{m, 2m, 3m, \ldots\} = \{\text{multiples of } m\} \text{ find };$	
	(i) $A_2 \cap A_7$ (ii) $A_3 \cap A_{12}$	[2marks] [2marks
	(b) state the axiom of choice.	[2marks]
	(c) Find if the sequence $x_n = \{1 + (-1)^n \frac{1}{n} : n \in \mathbb{N}\}$ is bounded or not .If b	oounded state
	its supremum and infimum.	[4marks]
	(d) Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.	[5marks]
	(e) Given that $f(x) = 2x + 1$ and $g(x) = x^2$, show that $(f^{-1} \circ g^{-1}(1)) = (g^{-1}(1))$	• f) ⁻¹ (1). [5marks]
