CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

MATH 205: ELEMENTS OF SET THEORY

STREAMS:
TIME: 2 HOURS
DAY/DATE: THURSDAY 14/12/2017
11.30 A.M - 1.30 P.M

INSTRUCTIONS:

- Answer question one and any other two questions.
- Do not write on the question paper

1. (a) List the elements of the following sets where $\mathbb{N}=\{1,2,3, \ldots\}$
(i) $\mathrm{A}=\{\mathrm{x}: \mathrm{x} \in \mathbb{N}, \mathrm{x}$ is even, $\mathrm{x}<15\}$
(ii) $\mathrm{B}=\{\mathrm{x}: \mathrm{x} \in \mathbb{N}, 4+\mathrm{x}=3\}$
(b) Given that $U=\{1,2,3, \ldots, 9\}, A=\{1,2,3,4,5\}, B=\{5,6,7,8,9\}$ and $C=\{4,5,6,7\}$ find
(i) $\mathrm{A} \oplus \mathrm{B}$.
(ii) $A^{c} \cap B^{c}$
(c) Prove that $A \cup B=B \cup A$.
[2marks]
(d) Determine the number of elements in the power set of $\mathrm{A}=\{$ days of the week $\}$.
[2marks]
(e) Define a well ordered set.
[2marks]
(f) Given that $\mathrm{f}(\mathrm{x})=x^{2}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}+3$, find ;
(i) $(f o g)(x)$
(ii) (gof)(x)
[2marks]
(g) If $\mathcal{A}=\{\{1,2,3,4\},\{2,3,4,5\},\{3,4,5,6\},\{3,4,7,8,9\}\}$, find ;
(i) $\cup \mathcal{A}$
(ii) $\cap \mathcal{A}$
(h) Prove that $[0,1] \approx(0,1)$
(i) Consider the Hasse diagram of an ordered set A below;

Find the,
(i)minimal and maximum elements of A .
(ii) First and last elements of A .
2. (a) Study the ordered set A represented below;

For each $a \in A$, let $p(a)$ denote the set of predecessors of a, that is, $p(a)=\{x: x \leq a\}$. Let $\mathrm{P}(\mathrm{A})$ the collection of all predecessor sets of A and let $\mathrm{P}(\mathrm{A})$ be an ordered set by inclusion. Draw the Hasse diagram for $\mathrm{P}(\mathrm{A})$.
[8marks]
(b) Suppose A and B are ordered sets. Show that the product order on A x B defined by $(\mathrm{a}, \mathrm{b}) \leqslant(\mathrm{c}, \mathrm{d})$ if $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{b} \leq \mathrm{d}$ is a partial ordering on $\mathrm{A} \times \mathrm{B}$.
(c) Let $S=\{a, b, c, d, e, f, g\}$ be ordered as in the figure below and $\operatorname{lrt} X=\{c, d, e\}$

Find the upper and lower bounds of X.
3. (a) Let λ be any ordinal number. Prove that $\lambda+1$ is the immediate successor of λ.
[5marks]
(b) Prove that if A and B are well ordered sets and:
$S=\{x: x \in A, s(x) \approx s(y)$ where $y \in B\}$
$T=\{y: y \in B, s(y) \approx s(x)$ where $x \in A\}$
Then S is similar to T .
(c) Given that $\mathrm{g}(\mathrm{x})=\frac{2 x-3}{5 x-7}$, find $g^{-1}(\mathrm{x})$.
4. (a) Prove that $\left(U_{i} A_{i}\right)^{c}=\cap_{i} A_{i}^{c}$.
(b) In a survey of 60 people, it was found that; 25 read the daily nation, 26 read standard , 26 read the people, 9 read both the nation and the people, 11 read both the nation and standard, 8 read the standard and the people and 3 read all the three newspapers.
(i) Find the number of people who read at least one of the newspapers. [3marks]
(ii) With N,S and P representing the people who read the nation, standard and people respectively draw a venn diagram with its 8 regions filled.
(iii) Find the number of people who read exactly one newspaper.
[2marks]
(c) Prove that a countable union of finite sets is countable.
5. (a) For each $\mathrm{m} \in \mathrm{P}$, let A_{m} be the subset of P given by
$A_{m}=\{\mathrm{m}, 2 \mathrm{~m}, 3 \mathrm{~m}, \ldots\}=.\{$ multiples of m$\}$ find ;
(i) $\quad A_{2} \cap A_{7}$
(ii) $\quad A_{3} \cap A_{12}$
[2marks]
(b) state the axiom of choice .
[2marks
(c) Find if the sequence $x_{n}=\left\{1+(-1)^{n} \frac{1}{n}: n \in \mathrm{~N}\right\}$ is bounded or not .If bounded state its supremum and infimum .
[4marks]
(d) Prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
[5marks]
(e) Given that $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=x^{2}$, show that $\left(f^{-1} \circ g^{-1}(1)=(g \circ f)^{-1}(1)\right.$. [5marks]

