MATH 0011

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF CERTIFICATE IN BRIDGING MATHEMATICS

MATH 0011: BASIC ALGEBRA

STREAMS:

TIME: 2 HOURS

11.30 A. M – 1.30 P.M

DAY/DATE: MONDAY 4/12/2017

INSTRUCTIONS:

•	Answer question one and any other three questions

(a) Classify the following numbers 1. (i) -2.222 (ii) 1 (iii) $\sqrt{-4}$ [3marks] (b) Sampling log_5 25 without using a calculator. [3marks] (c) Given $z_1 = 3 + 7i$ $z_2 = 5 - 6i$ Find (i) $\mathbf{z}_1 + \mathbf{z}_2$ (ii) $\mathbf{z}_i - \mathbf{z}_2$ (d) Show that $(x +)^2 + (y + z)^2 + (x - z)^2 = 2 (x+y) (x-z)$ [5marks] (e) Let f(x) be the expression $3x^2 - 2x + 1$. Find (i) f(2) (ii) f(y)(iii) $f(x^2)$ [4marks]

MATH 0011

	(f) Solve $2x + 3 < 5$ or $4x - 7 > 9$. Graph the solution.	[3marks]	
	(g) Factorize $6x^2 + 11x + 3$, hence solve the equation $6x^2 + 11 + 3 = 0$.	[5marks]	
	(h) Given that A = $\begin{bmatrix} -2 & 2 \\ -6 & -9 \end{bmatrix}$		
	Find (i) A^T		
	(ii) det (A)		
	(iii) A^{-1}		
2.	(a) State the properties of real numbers below		
	(i)5 = 5 + 0		
	(ii) $5(2x+7) = 10x+35$		
	(iii)5 (4+6) = 5 (4+6)	[3marks]	
	(b) Given $p(x) = x^3 - 2x^2 - 3x + 4$		
	$\mathbf{q}(\mathbf{x}) = -2x^2 + 4\mathbf{x} - 3$	[4marks]	
	find (i) $p(x) + q(x)$		
	(ii) $p(1) + q(2)$		
	(iii) $q(x)$ - $p(x)$	[4marks]	
	(c) Find the gradient of the line $13x - 4y = 9$	[3marks]	
3.	(a) Solve for x given 9 x $81^x = \frac{1}{27^{x-2}}$	[5marks]	
	(b) Find the quotient and the reminder given that		
	$4x^4 + 2x^3 - 7x^2 + 2 - 3 \div (x - 2)$	[5marks]	
4. The length of a rectangle is one metre greater than the width . The area of the r $72 m^2$. Letting the width be xm, show that $x^2 + x - 72 = 0$. Find the width. [5r			
	(b) In an AP of 25 terms, the fourth term is 4, 22 nd term is 5. Find the su	um of the AP. [5marks]	
5.	(a) Find the expansion of $(2x - 3y)^4$	[5marks]	
	(b) Solve the simultaneous equations below using substitution method		

MATH 0011

3p = 2q				
4p + q + 11 = 0				[5marks]
	4.1	10 11 1	. 1.	1 .1 .

6.

. (a) In how many ways can 4 boys and 2 girls be seated in a rows such that ;

(i) The boys and girls can sit anywhere

(ii) The two girls must sit together

(iii)The two girls must be separated.[5marks](b) simplify (i) 64 x $(8)^{\frac{-4}{3}}$ [3marks]

(ii)
$$(27)^{\frac{2}{3}}$$
 [2marks]