AGRI 221

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN HORTICULTURE

AGRI 221: PRINCIPLES OF GENETICS AND CYTOGENETICS

STREAMS: B.Sc (HORT) Y2S1

TIME: 2 HOURS

DAY/DATE: THURSDAY 7/12/2017

11.30 A.M - 1.30 P.M.

INSTRUCTIONS:

- Answer ALL Questions in Section I and any TWO in Section II
- Use of calculators and statistical tables is allowed
- Do not write anything on the question paper

SECTION I: [30 MARKS] QUESTION ONE

Differentiate the following terms

- (i) Transcription and Translation
- (ii) Coupling and repulsive phase
- (iii)Metacentric and acrocentric chromosomes
- (iv)Physical map and genetic map

QUESTION TWO

According to some cytophotometric measures, the amount of DNA in a diploid nucleus of each maize (*Zea Mays L.*) cell is made up of 5.0 picograms (5×10^{-12} g) of DNA. How much DNA would be found in the following stages? [5 Marks]

- (i) Prophase of mitosios
- (ii) Anaphase II of meiosis
- (iii)Prophase II of meiosis
- (iv)Metaphase I of meiosis
- (v) S stage of mitosis

QUESTION THREE

(a) Describe how you can introduce a gene from bacteria to cereal plant. [5 Marks]

(b) Explain four examples of successful chromosome manipulation in distant hybridization.

[4 Marks]

[8 Marks]

AGRI 221

QUESTION FOUR

In a cross +r+/w+s x wrs/wrs, the following offspring were obtained:

	1000
+rs/wrs 100	++s/wrs 40
wrs/wrs 4	+++/wrs 6
wr+/wrs 50	w+s/wrs 350
+r+/wrs 360	w++/wrs 90

- (i) Show the groups in the progeny that are true breeding. [1 Marks]
- (ii) Show the groups in the progeny that represent double crossovers. [1 Mark]
- (iii)Give the sequence of the three genes and calculate the map distance between (a) the first and second genes, and (b) the second and third genes. [6 Marks]

SECTION II [40 MARKS] QUESTION FIVE

A variety A is resistant to viral disease caused by stain I, but it is susceptible to race 2. Variety B is susceptible to race I of the pathogen but resistant to race 2. The F₁ hybrid of the two varieties in resistant to both races. In the F_2 the following segregation was observed.

- 1. Resistant to 1 and 2: 128 plants
- 2. Susceptible to 1 and 2: 14 plants
- 3. Resistant to 1 and susceptible to 2:39 plants
- 4. Susceptible to 1 and resistant to 2:44 plants

(i) How many genes govern resistance to each race?	[2 Marks]		
(ii) Suggest the expected segregation model.	[2 Marks]		
(iii)Using Chi-Square test, test whether the observed F_2 segregation rations a with the suggested model at 5% probability level.	re consistent [16 Marks]		
QUESTION SIX Discuss the types of DNA mutations.	[20 Marks]		
QUESTION SEVEN (a) Differentiate between Eukaryotic and prokaryotic promoter.	[8 Marks]		
(b) Using chromosomal manipulation, describe how you would synthesis the following:			
(i) An amphidiploid hexaploid wheat(ii) An amphidiploids triticale	[8 Marks] [5 Marks]		
•••••••••••••••••••••••••••••••••••••••	•••••		