

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN HORTICULTURE

AGRI 221: PRINCIPLES OF GENETICS AND CYTOGENETICS

STREAMS: B.Sc (HORT) Y2S1
TIME: 2 HOURS
DAY/DATE: THURSDAY 7/12/2017
11.30 A.M - 1.30 P.M.

INSTRUCTIONS:

- Answer ALL Questions in Section I and any TWO in Section II
- Use of calculators and statistical tables is allowed
- Do not write anything on the question paper

SECTION I: [30 MARKS]
 QUESTION ONE

Differentiate the following terms
[8 Marks]
(i) Transcription and Translation
(ii) Coupling and repulsive phase
(iii)Metacentric and acrocentric chromosomes
(iv)Physical map and genetic map

QUESTION TWO

According to some cytophotometric measures, the amount of DNA in a diploid nucleus of each maize (Zea Mays L.) cell is made up of 5.0 picograms $\left(5 \times 10^{-12} \mathrm{~g}\right)$ of DNA. How much DNA would be found in the following stages?
(i) Prophase of mitosios
(ii) Anaphase II of meiosis
(iii)Prophase II of meiosis
(iv) Metaphase I of meiosis
(v) S stage of mitosis

QUESTION THREE

(a) Describe how you can introduce a gene from bacteria to cereal plant.
(b) Explain four examples of successful chromosome manipulation in distant hybridization.

AGRI 221

QUESTION FOUR

In a cross $+\mathrm{r}+/ \mathrm{w}+\mathrm{s} \mathrm{x}$ wrs/wrs, the following offspring were obtained:

$+\mathrm{r}+/$ wrs 360	w++/wrs 90
wr+/wrs 50	w+s/wrs 350
wrs/wrs 4	$+++/$ wrs 6
+ +rs/wrs 100	$++\mathrm{s} /$ wrs 40
	1000

(i) Show the groups in the progeny that are true breeding.
[1 Marks]
(ii) Show the groups in the progeny that represent double crossovers.
[1 Mark]
(iii)Give the sequence of the three genes and calculate the map distance between (a) the first and second genes, and (b) the second and third genes.
[6 Marks]

SECTION II [40 MARKS]

QUESTION FIVE

A variety A is resistant to viral disease caused by stain I, but it is susceptible to race 2. Variety B is susceptible to race I of the pathogen but resistant to race 2 . The F_{1} hybrid of the two varieties in resistant to both races. In the F_{2} the following segregation was observed.

1. Resistant to 1 and 2: 128 plants
2. Susceptible to 1 and 2: 14 plants
3. Resistant to 1 and susceptible to $2: 39$ plants
4. Susceptible to 1 and resistant to $2: 44$ plants
(i) How many genes govern resistance to each race?
[2 Marks]
(ii) Suggest the expected segregation model.
(iii)Using Chi-Square test, test whether the observed F_{2} segregation rations are consistent with the suggested model at 5% probability level.
[16 Marks]

QUESTION SIX

Discuss the types of DNA mutations.
[20 Marks]

QUESTION SEVEN

(a) Differentiate between Eukaryotic and prokaryotic promoter.
(b) Using chromosomal manipulation, describe how you would synthesis the following:
(i) An amphidiploid hexaploid wheat
(ii) An amphidiploids triticale

