CHUKA

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF COMPUTER SCIENCE

COSC 211: DIGITAL ELECTRONICS
STREAMS:
TIME: 2 HOURS

DAY/DATE: MONDAY 4/12/2017
11.30 A.M - 1.30 P.M

INSTRUCTIONS:

- Answer all questions in section A and any other two questions from section B.
- No Reference Material is allowed in the exam Room.
- All Mobile phones should be switched off in the exam room.

SECTION A (COMPULSORY)

QUESTION 1(COMPULSORY) [30 MARKS]
a) Use Karnaugh maps SOP to minimize the following circuit.

$$
\begin{aligned}
X & =\overline{A B C D} \bar{E}+\bar{A} \bar{B} C \bar{D} \bar{E}+\bar{A} B C \bar{D} \bar{E}+\bar{A} B \bar{C} \bar{D} \bar{E}+\bar{A} \bar{B} \bar{C} \bar{D} E+\bar{A} B C \bar{D} E \\
& +\bar{A} B C D E+A \bar{B} \bar{C} \bar{D} \bar{E}+A \bar{B} \bar{C} \bar{D} E+A B C \bar{D} E+A B C D E+A \bar{B} C D E
\end{aligned}
$$

b) Using a circuit diagram, explain the operation of a J-K flip flop
c) Below is a digital circuit. Use it to answer the questions below: -

[^0]d) Design a simple circuit incorporating three LEDs, such that each one of the three LEDs lights when inputs 00,01 and 11 respectively are applied on the circuit's inputs A and B. (show the truth table but do not minimize circuit)
(6marks)
e) Draw a truth table of an XNOR with two inputs
f) Explain what is a hardware description language, hence outline the benefit of hardware description language.
(4marks)

SECTION B (Answer two question from this section)

QUESTION 2 [20 MARKS]

a) Use truth table to prove the following Boolean algebra.
i) $\quad A+\bar{A} B=A+B$
(4 marks)
ii) $\quad A+A B=A$
b) With reference to counters
i) Draw the circuit of a single bit counter (5marks)
ii) Using a truth table, explain how a single bit counter works (7marks)

QUESTION 3 [20 MARKS]

a) With reference to decoders
i) Draw a circuit diagram of a 2 to 4 decoder using INVERTERs and AND gatesonly
(5marks)
ii) Draw a truth table of the above decoder
(5 marks)
b) Draw a truth table and a circuit diagram with two inputs A and B, such that the outputs are logic 1 when $\mathrm{A}=0$ and $\mathrm{B}=0$, and when $\mathrm{A}=0$ and $\mathrm{B}=1$.
(6marks)
c) Distinguish between sequential access and direct access methods of storage devices
(4marks)

QUESTION 4 [20 MARKS]

With regard to the following POS logic algebra.

$$
\mathrm{Y}=(A+B+C)(A+B+\bar{C})(A+\overline{\mathrm{B}}+C)(\bar{A}+B+C)(\mathrm{A}+\mathrm{B}+\mathrm{C})(\mathrm{A}+\mathrm{B}+\overline{\mathrm{C}})(\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C})(\overline{\mathrm{A}}+\mathrm{B}+\mathrm{C})
$$

i) Minimize the logic using Karnaugh map
(4marks)
ii) Minimize the logic using Boolean algebra
(6marks)
iii) Develop the resultant truth table of the minimized circuit
(5marks)
iv) Draw the resultant circuit

QUESTION 5 [20 MARKS]

a) Using a block diagram explain the basic parts of a computer architecture.
b) Explain the working principles of a shift register.
c) Draw the symbol and Boolean logic of FIVE basic logic gates

[^0]: i) Simplify the above circuit (show the simplification process)
 ii) Draw a resultant circuit after the simplification.

