COSC 0170

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DIPLOMA IN COMPUTER SCIENCE

COSC 0170: MATHEMATICS FOR COMPUTING I

STREAMS: COSC

TIME: 2 HOURS

2.30 P.M. – 4.30 P.M.

DAY/DATE: WEDNESDAY06/12/2017 INSTRUCTIONS: ANSWER ALL QUESTIONS

QUESTION ONE (30 MARKS)

QUE	STION	ONE (30 MARKS)			
(a)	Discuss the following properties of real numbers				
	(i)	Commutative			
	(ii)	Associative			
	(iii)	Distributive	[3 marks]		
(b)	Simp	lify $\frac{8-6i}{3-4i}$	[3 marks]		
(c)	Given $2y-3x=5$, find the gradient and y- intercept of the line. [3 marks]				
(d)	Solve $6x^2 + 2x - 8 = 0$ using factorization method. [4 marks]				
(e)	(i)	How many arrangement are there of the letters of the word BUIL	DING.[2 marks]		
	(ii)	A committee of 5 men and 4 women is to be chosen from 8 men	and 6 women.		
		How many ways can this be done?	[5 marks]		
(f)	Given that				
	$\mathcal{E} = \{0, 2, 4, 6, 8, 10, 12\}$ $\mathcal{C} = \{4, 8\}$				
	$D = \{0, 2, 10\}$				
	$E = \{0, 2, 10, 12\}$				
	Find				
	(i)	C^{c}			
	(ii)	D ^c			

	(iii)	E^{c}		
	(iv)	EnD		
	(v)	CnDnE	[5 marks]	
(g)	Solve the following simultaneous equations using substitution method.			
	2x - y = 6			
	6 <i>x</i> –	[5 marks]		

QUESTION TWO (20 MARKS)

- (a) The coordinates of the end points of the diameter of a circle are A(-3, 8) and B(1, 5). Find
 - (i) The centre of the circle
 - (ii) Radius
 - (iii) Equation of the circle [10 marks]

(b)	The formula for converting °C to °F temperature is $F = \frac{9}{2}C + 32$. What celcius	
	temperature range correspond to the range $32 < F < 77$?	[5 marks]

(c) Solve 2x + 3 < 5 or 4x - 7 < 9. Graph the solution. [5 marks]

QUESTION THREE (20 MARKS)

(a) Construct a truth table to verify if the statements $np \rightarrow q$ and $np \rightarrow nq$ are equivalent

[8 marks]

(b)	Show that $\frac{1+\cos\theta}{\sin\theta} = \frac{\sin\theta}{1-\cos\theta}$	[5 marks]	
(c)	Given $g(x) = -7x + 2x^2$		
	$h(x) = 3x^3 + 6x^2 + 7$		
	Find:		
	(i) $g(x) + h(x)$		
	(ii) g(2)		
	(iii) $g(1) - h(-1)$		
	(iv) $2g(x) - h(x)$	[5 marks]	
(d)	Solve for <i>n</i> in ${}^{n}C_{2}= 28$	[5 marks]	

QUESTION FOUR (20 MARKS)

(a) Given
$$h(x) = \begin{cases} x+3 & if \ x \le 2 \\ 5 & if \ x < 6 \\ x^2+1 & if \ x \ge 6 \end{cases}$$

Find:

- (i) h(1)
- (ii) h(10)
- (iii) h(4)
- (iv) h(-3)
- (v) h(5)

(b) Find the quotient and the remainder in $3x^3 + x^2 - 13x + 16 \div x - 2$ [5 marks]

(c) Given
$$f(x) = 2x + 3$$

 $g(x) = -x^2 + 5$

Find

(i)
$$fog(x)$$

(11)
$$gof(x)$$

(iii)
$$fof(x)$$

(iv) $gog(x)$ [5 marks]

(d) Solve the equation $2\sin^2 x = \sin x$ for $0^\circ \le x \le 360^\circ$ [5 marks]

QUESTION FIVE

(a) Find $\frac{dy}{dx}$ using method of choice or indicated technique in the bracket

(i)
$$y = \frac{1}{x^2} + \sqrt{x}$$
 [3 marks]

(ii)
$$y = (5x^2 + 2)(x^3 - 3)$$
 (product rule) [3 marks]

(iii)
$$y = \frac{x^2 + 4x}{2x - 1}$$
 (quotient rule) [3 marks]

(iv)
$$y = (6x^4 - 1)^2$$
 (chain rule) [3 marks]

(b) Find the equation of the line passing through the points (1, 3) and (4, 9) [5 marks]

(c) Solve
$$3p - 2q = 0$$
 Using elimination method. [3 marks]
 $4p + q = 1$
