

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DIPLOMA IN

COMPUTER SCIENCE

COSC 0170: MATHEMATICS FOR COMPUTING 1

TIME: 2 HOURS

CAMPUSES: THARAKA

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Do not write anything on the question paper
- This is a closed book exam, no reference materials are allowed in the examination room
- There will be NO use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely.

Question one (30 marks)

a. Let $\mathrm{A}=\{3,4,6,7,8\}, \mathrm{B}=\{2,4,5,6,8\}$ and $\mathrm{C}=\{1,2,4,5,8\}$. What are the elements of the set $(A \backslash B) U(C \operatorname{BB}) ?$ [4 marks]
b. List all elements of the following sets:
i. $\{3 k+1 \mid k \in\{2,3,4\}\} \quad$ [3 marks]
ii. $\quad\left\{k^{2} \mid k \in\{-1,0,1,2\}\right\}[2$ marks]
iii. $\quad\{u-v \mid u €\{3,4,5\}, v €\{1,2\}\}$ [3 marks]
c. Draw a Venn diagram for the following sets:
i. $\quad(A \backslash B)[C, \quad[2$ marks $]$
ii. $(\mathrm{A} \backslash \mathrm{B})[(\mathrm{B} \backslash \mathrm{C})[(\mathrm{A} \backslash \mathrm{C}),[3$ marks $]$
d. Write the following expressions in summation notation.
$\begin{aligned} \text { i. } & 1+4+7+10,[2 \text { marks }] \\ \text { ii. } & 2+4+6+8+10,[3 \text { marks }]\end{aligned}$
e. Compute the values of n ! for every $n \in\{0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8\}$ [4 marks]
f. What is the sum of the binary numbers $(1011)_{2}+(1111)_{2}+(11)_{2} \quad$ [4 marks]

SECTION 2

Question two (20 marks)

a. In Hungary there is a game called "TOTÓ", where one bets on the outcome of certain football games. There are 13+1 games one can bet on, and there are 3 choices for each of them: one writes ' 1 ' if they think that the first team wins, one writes ' 2 ' if they think that the second team wins, and ' X ' means that the result is a draw. How many TOTÓ tickets should be filled out to make sure that one of them will be correct for all 13+1 games? [5 marks]
b. In a company the following system is used to record the people working there: in the first record the name of the person is written as a 20 long string with possible spaces. Then the gender of the person is put into the next record (male/female). Then follows the person's job title in a 10 letter long string, and finally comes the payment of the person as an at most 8 digit non-negative integer in base 10 . How many people records can be stored in this system if we allow empty names/job titles, as well? [6 marks]
c. The Hungarian alphabet contains 44 letters. How many 5, 7, 10 letter long (not necessarily meaningful) words can be created using Hungarian letters? [4 marks]
d. Five boys and three girls buy cinema tickets. They receive the tickets in the same row, their seats are numbered from 1 to 8 . How many different ways can they sit on the seats? How many different ways can they sit on the seats if boys sit on seats from 1 to 5 , and girls sit on seats from 6 to 8 ? [5 marks]

Question three (20 marks)

a. find the domain and range of the $f(x)=1 / x^{2}$
b. Given the equation $x^{2}+2 y-3=0$. [4 marks]
c. Given $f(x)=x+3$ find the $\lim _{x \rightarrow 4}$ off (x). [3 marks]
d. Find the limit
i. $\lim _{x \rightarrow 2} x^{2} \quad$ [3 marks]
ii. $\lim _{\mathrm{x} \rightarrow 2} \mathrm{x}^{3} \quad$ [3 marks]
e. Show the formula of a linear function. [2 marks]

Question Four (20 marks)

a. Define the terms
i. Multiset [2 marks]
ii. Power set [2 marks]
b. List FOUR properties of set. [4 marks]
c. Define the term partition. [2 marks]
d. Compute the partition of a set $\mathrm{X}=\{1,2,3,4,5,6,7,8,9,10\}$ [4 marks]
e. Let M, P and C be the sets of students taking Mathematicscourses, Physics courses and Computer Science courses respectivelyin a university. Assume $|\mathrm{M}|=300,|\mathrm{P}|=350,|\mathrm{C}|=$
$450,|\mathrm{M} \mathrm{n} \mathrm{P}|=100,|\mathrm{M} \mathrm{n} \mathrm{C}|=150,|\mathrm{P} \mathrm{n} \mathrm{C}|=75, \mid \mathrm{M} \mathrm{n} \mathrm{P} \mathrm{n} \mathrm{C\mid}=10$. Howmany students are taking exactly one of those courses? Use Venn diagram. [6 marks]

Question Five (20 marks)

a. Discuss the rules of differentiation. [10 marks]
b. Suppose that $\mathrm{r}(\mathrm{x})=9 \mathrm{x}$ and $\mathrm{c}(\mathrm{x})=\mathrm{x} 3 \square 6 \mathrm{x} 2+15 \mathrm{x}$, where x represents thousands of units. Is there a production level that maximizes profit? If so, what is it? [5 marks]
c. Discuss the properties of limit. [5 marks]

