CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUATION (ARTS, SCIENCE), BACHELOR OF SCIENCE

MATH 400: TOPOLOGY 1

STREAMS:

TIME: 2 HOURS

8.30 A.M - 10.30 A.M

DAY/DATE: FRIDAY 8/12/2017

INSTRUCTIONS:

- Answer question one and any other TWO questions
- Do not write on the question paper

QUESTION ONE: (30 MARKS)

(a) Distinguish the following terms as used in topology

- (i) An indiscrete topology and Sierpinski topology
- (ii) A base for the topology τ and a local basis at the point p
- (iii) A T_1 and T_2 space
- (iv) A regular space and a normal space (8marks)
- (b) (i) Let $X = \{a, b, c, d, e\}$. Determine whether or not the class

 $\tau_A = \{\{a, b, c\}, \{a, b, c, d\}, \{a, b, d\}, X, \emptyset\} \text{ of subsets of } X \text{ is a topology on } X.$

(2marks)

(ii) Let τ be a topology on a set X consisting of four sets i.e. $\tau = \{X, \emptyset, A, B\}$. What conditions must A and B satisfy? (2marks)

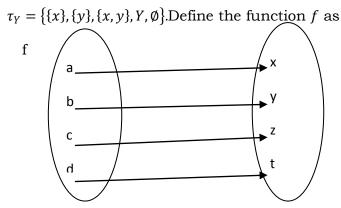
- (c) Prove that if A is a subset of a discrete topology, then set of its derived points A' is empty (4marks)
- (d) Consider the following topology on $X = \{a, b, c, d, e\}$ and

 $\tau = \{\{a\}, \{a, b\}, \{a, c, d\}, \{a, b, e\}, \{a, b, c, d\}, X, \emptyset\}.$

Given the sets $A = \{a\}, B = \{b\}, C = \{c, e\}$, which ones are dense in X? (6marks)

MATH 400

(e) Let $X = \{a, b, c, d\}$ with $\tau_X = \{\{a, b\}, \{a\}, \{b\}, X, \emptyset\}$ and Let $Y = \{x, y, z, t\}$ with



Show that the function f is a homomorphism.

(4marks)

(f) Let $f: X \to Y$ be a constant function. Prove that then f is continuous relative to τ_X and τ_Y . (4marks)

QUESTION TWO: (20 MARKS)

- (a) Prove that a topological space X is a T_1 space iff every singleton subset $\{p\} \subset X$ is closed. (5marks)
- (b) Let *A* be a subset of a topological space(*X*, τ). Prove that τ_A is a topology on *A*, where $\tau_A = \{A \cap G : G \in \tau\}$ (6marks)
- (c) Let $p \in X$ and denote N_p the set of all neighborhood of a point p. Prove that
 - (i) $N_P \neq \emptyset \forall N \in N_P, p \in N$
 - (ii) $\forall pairs N, M \in N_P, N \cap M \in N_P$
 - (iii) If $N \in N_P$ and for every $M \subset X$ with $N \subset M$ it implies that $M \in N_P$

(5marks)

(d) Let $f: x_1 \rightarrow x_2$ where $x_1 = x_2 = \{0,1\}$ and are such that (x_1, D) and $(x_2, \$)$ be defined by f(1) = 1 and f(0) = 0. Show that f is continuous whereas f^{-1} is not. (4marks)

QUESTION THREE: (20 MARKS)

(a) Consider the following topology on $X = \{a, b, c, d, e\}$ and

 $\tau = \{\{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}, X, \emptyset\}$. If $A = \{a, b, c\}$. Find

- (i) The exterior of A (3marks)
- (ii) The boundary of A (2marks)
- (iii) Hence show that the boundary of A, $\delta A = \overline{A} \cap \overline{X/A}$ (3marks)
- (b) Let $A \subset X$, where X is a non-empty topological space. Prove that $\overline{A} = \delta A \cup A^0$ (7marks)

MATH 400

(c) If θ is a subbasis for the topologies τ and τ^* on *X*, show that $\tau = \tau^*$

(5marks)

QUESTION FOUR: (20 MARKS)

(a) (i) Let $f: X \to Y$ be any function and (Y, τ_Y) an indiscrete topological space. Show that f is continuous (2marks)

(ii) Let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Prove that the composite function $g \circ f$ is continuous (5marks)

- (b) Let $f: X \to Y$ be a bijective. Prove that the following statements are equivalent.
 - (i) *f* is a homomorphism
 - (ii) f is open
 - (iii) f is closed
 - (iv) $f(\overline{A}) = \overline{f(A)}$

(13marks)

QUESTION FIVE: (20 MARKS)

(a) Using an appropriate counter examples show that a T_2 space $\Rightarrow T_1$ space and T_1 space $\Rightarrow T_0$ space but a T_0 space $\Rightarrow T_1$ and a T_1 space $\Rightarrow T_2$.

(8marks)

- (b) Prove that a topological space X is a T_1 space iff every singleton subset{p} $\subset X$ is closed. (6marks)
- (c) Let P: X → Y be an open map and let S ⊂ Y be any subset of Y and A is a closed set in X such that P⁻¹(S) ⊂ A. Show that S ⊂ B and P⁻¹(B) ⊂ A.
 (6marks)
