CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF DEGREE OF BACHELOR OF EDUCATION (ARTS), BACHELOR OF ARTS (MATHS- ECONS)

MATH 220: VECTOR ANALYSIS

STREAMS:

TIME: 2 HOURS
DAY/DATE: THURSDAY 14/12/2017
8.30 A.M - 10.30 A.M

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: ($\mathbf{3 0}$ MARKS)

(a) Distinguish the following terms as used in vector analysis:
(i) Linearly dependent vectors and Linearly independence vectors (2 marks)
(ii) The dot product and cross product of two vectors \vec{A} and $\vec{B} \quad$ (2 marks)
(iii) The gradient of a scalar function \emptyset and the divergence of the vetor $\vec{V} \quad$ (2 marks)
(iv) An irrotational vector and a solenoidal vector $\vec{V} \quad$ (2 marks)
(v) Rectangular coordinates and curvilinear coordinates of a point P (2 marks)
(b) (i) Show that addition of two vectors is commutative
(ii) Prove that if \vec{a} and \vec{b} are non-collinear vectors then $x \vec{a}+y \vec{b}=0$ implies $x=y=0$ (2marks)
(c) Given $\vec{A}=A_{1} \hat{\imath}+A_{2} \hat{\jmath}+A_{3} \hat{k}$ and $\vec{B}=B_{1} \hat{\imath}+B_{2} \hat{\jmath}+B_{3} \hat{k}$, show that $\vec{A} \times \vec{B}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ A_{1} & A_{2} & A_{3} \\ B_{1} & B_{2} & B_{3}\end{array}\right|$ (3 marks)
(d) Using vector method find the area of the triangle having vertices
$P(2,3,5), Q(4,2,-1), R(3,6,4)$
(e) If $\vec{A}=\left(2 x^{2} y-x^{4}\right) \hat{\imath}+\left(e^{x y}-y \sin x\right) \hat{\jmath}+\left(x^{2} \cos y\right) \hat{k}$, find $\frac{\delta^{2} A}{\delta x \delta y}$
(f) Find the work done in moving a particle in a force field given by

$$
\begin{equation*}
\vec{F}=(2 x y) \hat{\imath}-(5 z) \hat{\jmath}+(10 x) \hat{k} \text { along } x=t^{2}+1, y=2 t^{2}, z=t^{3} \text { from } t=1 \text { to } t=2 \tag{4marks}
\end{equation*}
$$

(g) State without proof the Green's theorem in a plane

QUESTION TWO: (20 MARKS)

(a) Find the equation for the plane perpendicular to the vector
$\vec{A}=2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}$ and passing through the terminal point of the vector $B=\hat{\imath}+5 \hat{\jmath}+3 \hat{k} \quad$ (3 marks)
(b) (i) Show that $\nabla \cdot \nabla \varnothing=\nabla^{2} \emptyset$, where $\nabla^{2}=\frac{\delta^{2}}{\delta x^{2}}+\frac{\delta^{2}}{\delta y^{2}}+\frac{\delta^{2}}{\delta z^{2}}$ denotes the laplacian operator.(4 marks)
(ii) Hence show that $\nabla^{2}\left(\frac{1}{r}\right)=0$
(c) Given that $\overrightarrow{\mathrm{A}}=\left(3 \mathrm{x}^{2}+6 \mathrm{y}\right) \hat{\mathrm{i}}-14 \mathrm{yz} \hat{\jmath}+20 \mathrm{xz}^{2} \hat{\mathrm{k}}$. Evaluate $\int_{C} \vec{A} \cdot \mathrm{~d} \vec{r}$ between the points $(0,0,0)$ and ($1,1,0$)

QUESTION THREE: (20 MARKS)

(a) (i)Given that $\vec{A}=(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{\jmath}+(4 x+c y+2 z) \widehat{k}$. Find the constants a, b and c such that the vector \vec{A} is irrotational.
(ii) Hence show that the vector \vec{A} in (c,(i)) can be expressed in as a gradient of a scalar function \emptyset (10 marks)
(b) State without proof the Stoke's theorem. Hence evaluate the surface integral of the normal component of a vector $\overrightarrow{\mathrm{A}}=(2 \mathrm{x}-\mathrm{y}) \hat{\imath}-\mathrm{yz}^{2} \hat{\jmath}+y^{2} \mathrm{z} \hat{\mathrm{k}}$ taken over the surface S of the upper half of the sphere
$x^{2}+y^{2}+z^{2}=1$

QUESTION FOUR: (20 MARKS)

(a) Given that $\emptyset=45 x^{2} y$, evaluate its volume integral such that the volume space is bounded by planes $4 x+2 y+z=8, x=0, y=0, z=0$.
(b)(i) Verify the Green's Theorem for $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$, where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$
(ii) Using Green's Theorem
evalauate $\int_{C}(y-\sin x) d x+\cos x d y$, where C is the trainlge of the adjoining figure:

QUESTION FIVE: (20 MARKS)

(a) State without proofthe Frenet-Serret formulas
(b) Given the space curve defined by $x=3 \operatorname{cost}, y=3 \operatorname{sint}, z=4 t$. Find
(i) The tangent vector \vec{T}
(3 marks)
(ii) The principal normal $\overrightarrow{\mathrm{N}}$
(3 marks)
(iii) The Binormal \vec{B} (2 marks)
(c) Given $\overrightarrow{\mathrm{A}}=18 \mathrm{z} \hat{\imath}-12 \hat{\jmath}+3 y \hat{k}$. Evaluate $\iint_{S} \overrightarrow{\mathrm{~A}} \cdot \mathrm{~d} \vec{s}$ where the surface S is the part of the plane $2 x+3 y+6 z=12$ in the first octant.

