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Answer question ONE and TWO other questions

Sketch maps and diagrams may be used whenever they help to illustrate your answer

Do not write anything on the question paper
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There will be No use of mobile phones or any other unauthorized materials
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QUESTION ONE: (30 MARKYS)
(a) Distinguish the following terms as used in vector analysis:

Q) Linearly dependent vectors and Linearly independence vectors (2 marks)
(i) The dot product and cross product of two vectors A and B (2 marks)
(ili)  The gradient of a scalar function @ and the divergence of the vetorV~ (2 marks)
(iv)  Anirrotational vector and a solenoidal vector V' (2 marks)
(V) Rectangular coordinates and curvilinear coordinates of a point P (2 marks)
(b) (i) Show that addition of two vectors is commutative (2 marks)
(ii) Prove that if @ and b are non-collinear vectors then xd + yf) = 0impliesx =y =0
(2marks)
(c) Given 4 = 4,1 + A,] + Ask and B = B,1 + B,j + B3k, show that
L i 7k
AXB=|A; A, A; (3 marks)
By B, Bj
(d) Using vector method find the area of the triangle having vertices
P(2,3,5),Q(4,2,—1),R(3,6,4) (4 marks)
) If 4= (2x%y —xHi+ (e — ysinx)j + (x2cosy)k, find % (3 marks)
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(F) Find the work done in moving a particle in a force field given by
F = (2xy)i — (52)] + (10x)kalongx = t2 + 1,y = 2t%,z =t3 fromt = 1 to ¢t = 2
(4 marks)
(g) State without proof the Green's theorem in a plane (2 marks)

QUESTION TWO: (20 MARKS)

(a) Find the equation for the plane perpendicular to the vector
A = 21 + 3} + 6kand passing through the terminal point of the vector B= i + 5f + 3k (3 marks)

2 2 2
(b) (i) Show that V - V@ = V2@ , where V2= — + sy—z + ;Z—zdenotes the laplacian operator.(4 marks)

5_

(i) Hence show that V2 (;) =0 (8 marks)
(c) Given that A = (3x2 + 6y)i — 14yzj + 20xz2k. Evaluate [ . A - d7 between the points (0,0,0)
and (1,1,0) (5 marks)

QUESTION THREE: (20 MARKS)

(a) (i)Given thatd = (x + 2y + az)i + (bx — 3y — 2)j + (4x + cy + 2z)k Find the

constantsa, b and ¢ such that the vector Ais irrotational. (3marks)
(ii) Hence show that the vector Ain (c,(i)) can be expressed in as a gradient of a scalar function @
(10 marks)

(b) State without proof the Stoke’s theorem. Hence evaluate the surface integral of the normal
component of a vector A=(2x— y)i — yz?] + y?zk taken over the surface S of the upper half of
the sphere

X2 +y?+z2=1 (7 marks)

QUESTION FOUR: (20 MARKS)
(a) Given that @ = 45x2y, evaluate its volume integral such that the volume space is bounded by
planes4x +2y+z=8, x =0,y =0,z = 0. (6 marks)

(b)(i) Verify the Green’s Theorem for [. (xy +y*)dx + x*dy,
where C is the closed curve of the region bounded by y = x and y = x>  (8marks)

(i) Using Green’s Theorem

evalauatefc (y — sinx)dx + cosxdy ,where C is the trainlge of the adjoining figure:
(6 marks)

Page 2 of 3



MATH 220

B("/2.0)
‘ »
0 T A0
QUESTION FIVE: (20 MARKS)
(a) State without proofthe Frenet-Serret formulas (3 marks)
(b) Given the space curve defined by x = 3cost,y = 3sint, z = 4t.Find
(i) The tangent vector T (3 marks)
(ii) The principal normal N (3 marks)
(iii) The BinormalB (2 marks)
(©) GivenA = 18z1— 12§ + 3yk . Evaluate ffs A - d§ where the surface S is the part of the
plane 2x + 3y + 6z = 12 in the first octant. (9 marks)
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