## **MATH 442**

CHUKA



UNIVERSITY

## UNIVERSITY EXAMINATIONS

#### FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (ECONOMICS AND STATISTICS) AND BACHELOR OF EDUCATION (SCIENCE)

#### MATH 442: DESIGN OF EXPERIMENT I

STREAMS: BSC (ECON & STATS) & BED (SCI)

TIME: 2 HOURS

DAY/DATE: WEDNESDAY 06/12/2017

11.30 A.M. - 4.30 P.M.

# **INSTRUCTIONS:**

- Answer question ONE and any other TWO questions
- Use of calculators and statistical tables is allowed
- Do not write anything on the question paper

# **QUESTION I (30 MARKS)**

 (a) Experimental error and sampling error are both sources of variability in field and laboratory experiments. Define each of the errors and describe their possible sources.

[5 marks]

- (b) (i) Discuss possible advantages of using split design plot and give a skeleton of ANOVA table for split-plot design. [9 marks]
  - (ii) State three possible situations where split plot design would be appropriate.

[3 marks]

- (c) Discuss the essential components of the design of an experiment. [6 marks]
- (d) Discuss three data transformation methods and state when each in most appropriate.

[6 marks]

#### **MATH 442**

## **QUESTION 2 (20 MARKS)**

A researcher designed an experiment to study the growth of a particular strain of bacteria at four different temperatures and the results are given below.

| Temperature | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> | $T_4$ |
|-------------|----------------|----------------|----------------|-------|
|             | 74.8           | 89.0           | 96.6           | 102.2 |
|             | 78.4           | 99.8           | 109.2          | 112.5 |
|             | 78.1           | 94.6           | 98.6           | 105.9 |

(a) Carry out the analysis of variance and interpret the results. [12 marks]

(b) Perform mean separation procedures using least significant difference (LSD) on the analyzed data at  $\alpha = 0.05$ , and make your comment. [8 marks]

## **QUESTION 3 (20 MARKS)**

A certain company had five salesmen A, B, C, D and E, each of whom was sent for a week into four different county, M, N, O and P. The coded sales per week are shown below:

| Salesmen/county | М  | Ν  | 0  | Р  |  |
|-----------------|----|----|----|----|--|
| A               | 22 | 8  | 8  | 10 |  |
| В               | 12 | 8  | 6  | 12 |  |
| С               | 16 | 12 | 8  | 22 |  |
| D               | 28 | 54 | 16 | 36 |  |
| Е               | 14 | 8  | 18 | 28 |  |

| (a) | Write down the statistical model.                             | [3 marks]  |
|-----|---------------------------------------------------------------|------------|
| (b) | Carry out the analysis of variance and interpret the results. | [17 marks] |

## **MATH 442**

## **QUESTION 4 (20 MARKS)**

An experiment was set up in a 5 x 5 Latin Square Design (LSD) with the blocking being due to operators and type of materials (values in the parenthesis indicate the response value for a given treatment)

|           | Materials |       |       |       |       |
|-----------|-----------|-------|-------|-------|-------|
| Operators | A[24]     | B[17] | C[18] | D[26] | E[22] |
|           | B[20]     | C[24] | D[38] | E[31] | A[30] |
|           | C[19]     | D[30] | E[26] | A[26] | B[20] |
|           | D[24]     | E[27] | A[27] | B[23] | C[29] |
|           | E[24]     | A[36] | B[21] | C[22] | D[31] |

(a) Compare randomized complete block design and Latin square design and state a situation where it is most appropriate. [2 marks]
(b) Carry out an analysis of variance and interpret the result. [18 marks]

# **QUESTION 5 (20 MARKS)**

(a) An experiment with two levels for the animal treatment (factor A) and three levels for the type of feed (factor B) and replicate three times was laid out in RCBD. Generate a plot layout and write down a skeleton of ANOVA table. [12 marks]
(b) Discuss the assumptions of analysis of variance. [8 marks]

\_\_\_\_\_