

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (ARTS,SCIENCE)

MATH 420: PARTIAL DIFFERENTIAL EQUATIONS I

STREAMS:
TIME: 2 HOURS
DAY/DATE: MONDAY 4/12/2017
2.30 P.M - 4.30 P.M

INSTRUCTIONS:

- Answer question one and any other two questions

QUESTION ONE

(a) Define a partial differential equation and give an example.
[2marks]
(b) Find the integral curves of the equation.

$$
\frac{d x}{x y}=\frac{d y}{y^{2}}=\frac{d z}{x y z-2 x^{2}}
$$

(c) Show that the equation is integrable.

$$
\left(x^{2} z-y^{3}\right) \mathrm{dx}+\mathrm{x} x y^{2} \mathrm{dy}+x^{3} \mathrm{dz}=0
$$

[4marks]
(d) Show that $V=f(y-3 x)$, where f is an arbitrary function is the general solution to the PDE.

$$
\frac{d v}{d x}+\frac{3 d v}{d y}=0
$$

[4marks]
(e) Find the P.D.E associated with with $2 \mathrm{z}(\mathrm{ax}+\mathrm{y})^{2}+\mathrm{b}$ by eliminating the constants a and b.
(f) State the necessary conditions for the equation $\mathrm{P} \frac{d z}{d x}+Q \frac{d z}{d y}=\mathrm{R}$ to be classified as
(i) Linear
(ii) Semi - linear
(iii) Quasi - linear

QUESTION TWO (20MARKS)

(a) Find the partial differential equation arising from $\widehat{\varnothing}\left(x+y+z, x^{2}+y^{2}-z\right)=0$.
[5marks]
(b) Solve the partial differential equation using lagrange's method. [9marks]

$$
\begin{equation*}
\frac{y^{2} z b}{x}-\mathrm{Xzq}=y^{2} \tag{9marks}
\end{equation*}
$$

(c) Solve the momogeneous D.E $\left(y z+z^{2}\right) d x+x y d z=z d y$.
[6marks]

QUESTION THREE (20MARKS)

(a) Find the ortholonial trajectories on the surface $x^{2}+y^{2}$ fyz $+\mathrm{d}=0$ and its intersection with the planes $\mathrm{z}=\mathrm{c}$ where c is a parameter.
(b) Show that the simultaneous equations

$$
\begin{aligned}
& p_{1} \mathrm{dx}+Q_{1} \mathrm{dy}+R_{1} \mathrm{dz}=0 \\
& p_{2} \mathrm{dx}+Q_{2} \mathrm{dy}+R_{2} \mathrm{dz}=0
\end{aligned}
$$

Can be reduced to the form
$\frac{d x}{p}=\frac{d y}{Q}=\frac{d z}{R}$. Hence solve
$\frac{d x}{x(z-y)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}$
[8marks]
(c) show that $v=f(y-3 x)$ where f is an arbitrary function is the general solution to the D.E and hence find the particular solution which satisfied the condition $v=(0, y)=4 \sin y$.
[4marks]

QUESTION FOUR (20MARKS)

(a) Find the complete integral solution of the following non linear differential equations.
(i) $P^{2}-q^{2}=16$ [7marks]
(ii) $\mathrm{px}+\mathrm{qy}+p_{q}=\mathrm{z}$
[4marks]
(b) Find the integral curves of the equation using the multipliers (1,1,1). [9marks]
$\frac{d x}{x z-y}=\frac{d y}{y z-x}=\frac{d z}{1-z^{2}}$

QUESTION FIVE (20MARKS)

(a) Consider the non linear P.DE $f(x, y, z, p, q)=0$ where z is a function of x and y. Write down the general auxiliary equation of the chart pit method.
[2marks]
(i) Solve the differential equation using char pit method.
$P^{2}-\mathrm{xp}-\mathrm{q}=0$
(b) Find the orthogonal trajectories on the surface on the surface $z(x-y)=1$ of the conics in which it is out by the system of planes $x-y+z=c$ where c is a parameter.
[8marks]

