CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

MATH 344: THOERY OF ESTIMATION

STREAMS:

DAY/DATE: TUESDAY 05/12/2017 INSTRUCTIONS:

TIME: 2 HOURS

2.30 P.M. - 4.30 P.M.

QUESTION ONE (30 MARKS)

(a) Let $Z = a^2x + b^2$ and that X is a random variable from a given population, and that a and b are constants

Find

(i) Var (Z). isVar (Z) an unbiased estimator of Var (X)? Explain your answer.

[3 marks]

(ii) For Var (Z) to be an unbiased estimator of Var (X), what is the value of a?

[1 mark]

(b) Given a random sample of size *n* from a gamma population, use the method of moments to obtain the formula for estimating ∝ and β.
(Note: for a gamma population E(X) = μ₁' = ∝ β and Var(X) = μ₂' = ∝ (∝ +1)β²).

[5 marks]

- (c) Studies have shown that a random variable X, the processing time required to do a multiplication in a 3-D computer is normally distributed with mean μ and standard deviation 2 microseconds. A random variable of 16 observations is to be taken. These are the data obtained: 42.65, 45.13, 39.32, 44.44, 41. 63, 41.54, 41.59, 45.68,46.50, 41.35, 44.37, 40.27, 43.87, 43.79, 43.28, 40.7
 - (i) What is the distribution of the random variable X? [1 mark]
 - (ii) Based on the data given above, find the unbiased estimate for μ . [3 marks]

(d) From your results obtained in c (ii) above, find a 95% confidence interval for μ . Would you be surprised to read that the average time required to process a multiplication on this system is 42.2 microseconds? Explain based on the confidence interval obtained.

[4 marks]

[4 marks]

(e) Consider a random variable X with a density given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, for - \infty < x < \infty$$

Show that \bar{x} is a minimum variance unbiased estimator for μ . [4 marks]

(f) (i) By use of moments, show that $Var(X) = \mu'_2 - \mu'_1$ [3 marks]

(ii) Given that
$$S^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
, show that S^2 is a biased estimator of $Var(X)$

(iii) Differentiate between a parameter and a statistic. [2 marks]

QUESTION TWO (20 MARKS)

(a) Consider a random variable X with density given by

 $f(x) = (1 + \theta)x^{\theta}, 0 < x < 1; \theta > -1$

- (i) Show that $\int_0^1 f(x) dx = 1$ regardless of the specific value chosen for θ .[3 marks]
- (ii) Find μ'_1 [3 marks]
- (iii) Find the method of moments estimate for θ based on the data given below: 0.5, 0.3, 0.1, 0.1 and 0.2 [3 marks]
- (iv) Find the maximum likelihood estimate for θ based on the data in (a) (iii) above. Does this value agree with the method moments estimate in (a) (iii) above? [5 marks]

(b) The summary statistics given are results of data analysis on the study of relative humility (%), X, and solvent evaporation (%), Y: n = 25, $\sum x^2 = 76308.53$, $\sum x = 1314.9$, $\sum y^2 = 2286.07$, $\sum xy = 11824.44$, $\sum y = 235.7$

Use the summary statistics given to:

- (i) Estimate β_0 and β_1 [4 marks]
- (ii) Fit a linear regression model and estimate Y when X = 29.75 [3 marks]

QUESTION THREE

(a) Let $\hat{\theta}$ be an estimator of a parameter θ . Show that the mean square error M.S.E $(\hat{\theta})$ of θ is given by

M.S.E
$$(\hat{\theta}) = E(\hat{\theta} - \theta)^2 = var(\hat{\theta}) + [b(\hat{\theta})]^2$$
 where $b(\hat{\theta})$ is the bias of $\hat{\theta}$. [5 marks]

(b) Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with pdff(x) given by $f(x|x) = \int \lambda e^{-\lambda x} \qquad 0 < x$

$$f(x|\lambda) = \begin{cases} \lambda e^{-\lambda x} & 0 < x \\ 0 & elsewhere \end{cases}$$

Find the estimator of λ using the method of moments. [5 marks]

(c) Suppose $X_1, X_2, ..., X_n$ constitutes a random sample from a population with probability density function $f(x|\theta) = \begin{cases} \frac{1}{\theta} & 0 < x < \theta, & 0 < \theta \\ 0 & elsewhere \end{cases}$ Where θ is an unknown parameter.Let $T = Max(x_1, x_2, ..., x_n)$. Show that $\theta = \left(1 + \frac{1}{n}\right)T$ is an unbiased estimator of θ . [10 marks]

QUESTION FOUR

- (a) Suppose $x_1, x_2, ..., x_n$ is a random sample drawn from a population with pdf $f(x|\theta)$ where θ is an unknown parameter. Let $d(\tilde{x}) = d(x_1, x_2, ..., x_2)$ be any unbiased estimator of a function $g(\theta)$ of the parameter θ . If $f(x|\theta)$ satisfies certain regulatory conditions, then the Cramer-Rao inequality theorem gives the lower bound of the variance of d(x).
 - (i) State the regularity conditions. [4 marks]
 - (ii) State and prove Cramer-Rao inequality theorem. [10 marks]
- (b) Consider the normal distribution with mean μ and variance σ^2 that is $\sim N[\mu, \sigma^2]$ where both μ and σ^2 are unknown. Let S_1^2 and S_2^2 where $S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ and $S_2^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$ be two estimators of σ^2 . Which one of the two is more efficient? [6 marks]

QUESTION FIVE

- (a) Suppose X_1, X_2, X_3 form a random sample of size 3 from a bernoull distribution with parameter θ , show that the statistic T is given by $T = X_1 + 2X_2 + 3X_3$ is not sufficient for θ [6 marks]
- (b) Let x be a poisson variable with parameter λ .Let $X_1, X_2, ..., X_n$ be a random sample on X. find the minimum variance best unbiased estimator of λ if it exists. [10 marks]
- (c) Suppose $X \sim N[\mu, \sigma^2]$ with σ^2 known. If $X_1, X_2, ..., X_n$ is a random samplefrom X, construct a $(1-\alpha)$ 100% confidence interval for μ . [4 marks]
