

UNIVERSITY

UNIVERSITY EXAMINATIONS
THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (SCIENCE \& ARTS) \& BACHELOR OF SCIENCE GENERAL

MATH 324: FLUID MECHANICS I

STREAMS: BED (SCI \& ARTS) \& BSC
TIME: 2 HOURS
DAY/DATE: TUESDAY 05/12/2017
2.30 P.M. - 4.30 P.M.

INSTRUCTIONS:

- Answer question ONE (Compulsory) and any other TWO questions
- Adhere to the instructions on the answer booklet

QUESTION ONE

(a) The velocity distribution for flow over a plate is given by $u=\sqrt{2+y^{2}}$, where u is the v velocity in m / s at a distance y metres above the plate. Determine the velocity gradient and shear stress at the boundary and 10 metres from it. Take dynamic viscosity of fluid as

$$
0.9 \mathrm{~ns} / \mathrm{m}^{2} . \quad[4 \text { marks] }
$$

(b) The space between two square flat parallel plates is filled with oil. Each of the plates is 720 mm . the thickness of the oil film is 15 mm . the upper place which moves at a speed of $3 \mathrm{~m} / \mathrm{s}$ requires a force of 120 N to maintain the speed. Determine the dynamic of the oil.
[4 marks]
(c) A soap bubble 62.5 mm diameter has an internal pressure in excess of the outside pressure of $20 \mathrm{~N} / \mathrm{m}^{2}$. What is the tension in the soap film.
[4 marks]
(d) A u-tube is made up of two capillaries of tones 1.2 mm and 2.4 mm respectively. The tube is held vertical and partially filled with liquid of surface tension $0.06 \mathrm{~N} / \mathrm{M}$ and zero contact angle. If the estimated difference in the level of the two menisci is 15 mm . determine the mass density of the liquid. [4 marks]
(e) Find the velocity and acceleration at a point $(1,2,3)$ after 1 second, for a 3 dimensional flow given by $u=y z+t, v=x z-t, w=x y m / s$

MATH 324

(f) In three dimensional incompressible fluid flow the velocity components in x and y directions
$u=x^{2}+y^{2} z^{3}, v=(x y+y z+z x)$. Use the continuity equation to evaluate an expression for the velocity component (w) in the z-direction. [4 marks]
(g) For a two dimensional flow, the velocity function is given by the expression $\phi=x^{2}-y^{2}$.
(i) Determine the velocity components in the x and y directions. [2 marks]
(ii) Show that the velocity components satisfy the conditions of flow continuity and irrotationality.
[3 marks]

QUESTION TWO (20 MARKS)

(a) In a two dimensional incompressible flow filed, the velocity components are expressed as $u=2 X-x^{2} y+\frac{y^{3}}{3}$ and $v=x y^{3}-2 y-\frac{-3^{3}}{3}$
(i) Determine the velocity and acceleration of a point $x=1 m, y=3 m$. [8 marks]
(ii) Show that the flow is possible and obtain an expression for the stream function.
[5 marks]
(iii) Show that the flow is irrotational and determine the corresponding velocity potential.
[4 marks]
(b) Determine whether the velocity functions $u=A \sin x y, r=A \sin x y$ satisfy the equation of continuity.
[3 marks]

QUESTION THREE

(a) In order to form a stream of bubbles, air is introduced through a nozzle into a tank of water of $20^{\circ} \mathrm{C}$. If the process requires a 3.0 mm diameter bubbles to be formed, by low much the air pressure at the nozzle must exceed that of the surroundingwater. Take σ of water at $20^{\circ} \mathrm{C}$ to be $0.0735 \mathrm{~N} / \mathrm{m}$.
(b) When pressure of $20.7 \mathrm{mN} / \mathrm{m}^{2}$ is applied to 100 litres of a liquid, its volume decreases by 1 litre. Find the bulk modulus of the liquid.
[3 marks]
(c) A rectangular plate 3 metres long and 1 metre wide is immersed vertically in water in such a way that its 3 m side is parallel to the water surface and is 1 m below it. Find the total pressure on the plate and the position of centre of pressure.

MATH 324

(d) The velocity potential function for a two dimensional flow is given by $\phi=x(2 y-1)$. At a point $p(4,5)$, determine the velocity and value of the stream function.[6 marks]
(e) In a three-dimensional incompressible fluid flow, the velocity components in x and y directions are $u=x^{2}+y^{2} z^{3}, v=-(x y+y z+z x)$. Use the continuity equation to evaluate an expression, for the velocity components in the z-direction. [3 marks]

QUESTION FOUR

(a) Given that $u=x y, v=2 y z$. Examine whether these velocity components represent two or three dimensional incompressible flow. Assuming the flow is dimensional, determine the third component.
(b) A pipe A, 450 mm in diameter branches into two pipes B \& C of diameters 300 mm and 200 mm respectively as shown in the figure below. If the average velocity in the 450 mm diameter pipe is $3 \mathrm{~m} / \mathrm{s}$. determine the discharge through pipe A and the velocity in pipe C , if the average velocity in pipe B is $2.5 \mathrm{~m} / \mathrm{s}$.
[6 marks]
(c) A pipeline is 15 cm in diameter and it is at elevation of 100 m at section A . at section B it is at elevation of 107 m and has a diameter of 30 cm . when a discharge of 50 litres see of water is passed through this pipeline, pressure at A is 35 Kpa . The energy loss in pipe is 2 m . of water. Calculate the pressure at B if flow is from A to B.

MATH 324

QUESTION FIVE

(a) In a pipe of 90 mm diameter, water is flowing with a mean velocity of $2 \mathrm{~m} / \mathrm{s}$ and at a gauge pressure of $350 \mathrm{kN} / \mathrm{m}^{2}$. Determine the total lead if the pipe is 8 metres above the datum line.
(b) Obtain the equation to the streamlines for the velocity field given as $v=2 x^{3} i-6 x^{2} y j$ [5 marks]
(c) The velocity vector in a flow is given by $v=3 x i+4 y j-72 k$. determine the equation passing through a point $L(1,2,3)$.
[3 marks]
(d) Calculate the specific weight, specific mass \& specific volume of a liquid having a volume of $60 \mathrm{~m}^{3}$ and a weight of 440 KN .
[6 marks]

