CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION SCIENCE/ARTS, BACHELORS OF SCIENCE, BACHELORS OF ARTS(MATHS-ECONS), BACHELORS OF SCIENCE(ECON STATS)

MATH 316: LINEAR ALGEBRA II

STREAMS:BED(ARTS,SCI),BSC (ECONSTAT,MATH &EECONS) TIME: 2HRS

DAY/DATE: MONDAY 11/12/2017

11.30 A.M – 1.30 P.M

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

a) Consider the following two bases of \mathbb{R}^2 $\{e_1 = (1,0), e_2 = (0,1)\}$ and $\{f_1 = (1,1), f_2 = (-1,0)\}$. Find the transition matrix P from the basis $\{e_i\}$ to the basis $\{f_i\}$ and Q from the basis $\{f_i\}$ to the basis $\{e_i\}$ (5 marks)

MATH 316

b) Given that
$$A = \begin{bmatrix} 2 & -3 & 3 \\ 3 & -4 & 3 \\ 6 & -6 & 5 \end{bmatrix}$$
, find the eigenvalues of A^3 (5 marks)

- c) Find the symmetric matrix that correspond to the following quadratic form $q(x, y, z) = xy + y^2 - 4xz + z^2$ (3 marks)
- d) Let A be an nxn matrix over a field K. show that the mapping $f(X, Y) = X^T A Y$ is a bilinear form on K^n (3 marks)
- e) Prove that similar matrices have the same characteristic polynomial. (3 marks)
- f) State how elementary row operations affect the determinant of a square matrix, hence or otherwise show that if two rows are equal the determinant is zero. (4 marks)

g) Show that if
$$A = \begin{bmatrix} 1 & -1 \\ 3 & 4 \end{bmatrix}$$
, then find A^5 (3 marks)

h) Find the minimal polynomial of the matrix
$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4 \end{bmatrix}$$
 (4 marks)

QUESTION TWO (20 MARKS)

a) Let f be a bilinear form on R^2 defined by

 $f[(x_1, x_2), (y_1, y_2)] = 3x_1y_1 - 2x_1y_2 + 4x_2y_1 - x_2y_2$. Find

- i. The matrix A of f in the basis $\{u_1 = (1,0), u_2 = (1,1)\}$
- ii. The matrix B of f in the basis $\{v_1 = (2,1), v_2 = (1,-1)\}$
- iii. The change of basis matrix P from the basis $\{u_i\}$ to the basis $\{v_i\}$ and verify that $B = P^T A P$.

(12 marks)

b) Let A be the matrix

 $\begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & 3 \\ 1 & 3 & 2 \end{bmatrix}$

Apply diagonalization algorithm to obtain a matrix P such that $D = P^{T}AP$

(4 marks)

c) Consider the basis U of R^4 spanned by the vectors $\{v_1 = (1,1,1,1), v_2 = (1,1,2,4), v_3 = (1,2,-4,-3)\}$, use the Gram Schmidt formula to find an orthonormal basis. (4 marks)

QUESTION THREE (20 MARKS)

a) Given that $A = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 2 & 5 & -3 & 1 \\ 1 & 6 & -2 & 4 \\ 0 & 1 & -3 & 7 \end{bmatrix}$ determine the number n_k and the sum S_k of principal minors of order 1, 2 and 4. (7 marks) b) Let $A = \begin{bmatrix} 2 & -3 & 3 \\ 3 & -4 & 3 \\ 6 & -6 & 5 \end{bmatrix}$

i.	Find the characteristic polynomial of A.	(3 marks)
ii.	Find all the eigenvalues of A and their corresponding eigenvectors.	(6 marks)
iii.	Is A diagonalizable? If yes, Determine the matrices P and D such that	$D = P^{-1}AP$ such
	that D is diagonal.	(1 mark)
iv.	Find a matrix B such that $B^2 = A$	(3 marks)

QUESTION FOUR (20 MARKS)

- a) State Cayley-Hamilton theorem and verify using a linear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (4x_1 3x_2, x_1 + 5x_2)$
- b) Find the characteristic polynomial and hence the minimal polynomial of the matrix

	4	1	0	0	0
	0	4	1	0	0
A=	0	0	4	0	0
	0	0	0	4	1
	0	0	0	0	4

(6 marks)

c) Consider the basis of R^3 consisting of the vectors $y_1 = (1,0,1)$, $y_2 = (2,-1,3)$ and

 $y_3 = (-1,1,1)$ and a non singular matrix $P = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 0 \\ -1 & 2 & 4 \end{bmatrix}$. Find the vectors x_1, x_2, x_3 which

MATH 316

form a basis for \mathbb{R}^3 so that P is the transition matrix from the basis consisting of the vectors x_1 , x_2 and x_3 to the basis formed by y_1 , y_2 and y_3 (8 marks)

QUESTION FIVE (20 MARKS)

a) Let A= $\begin{bmatrix} 4 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$ be a 5-square matrix and $I = \{1,2,4\}$ and $J = \{1,3,5\}$ be row and column indices of A respectively. find the minors A(I;J), A(I';J') and their corresponding signed minors i. (2 marks) ii. find the minimal polynomial for A (3 marks) b) i. Define a complex inner product space. (2 marks) ii. Let V be a complex inner product space, verify that $< u, av_1 + bv_2 >= \overline{a} < u, v_1 > + \overline{b} < u, v_2 >$ (2 marks) iii. Suppose $\langle u, v \rangle = 3 + 2i$, evaluate $\langle (3-6i)u, (5-2i)v \rangle$ (3 marks) c) Consider the quadratic form $q(x, y) = 3x^2 + 2xy - y^2$ and the linear substitution x = s - t and v = s + tRewrite q(x, y) in matrix notation and find the matrix notation and find the matrix A i. representing q(x, y)(1 mark) Rewrite the linear substitution using matrix notation and find the matrix P corresponding ii. to the substitution (3 marks) Write the quadratic form q(s,t)iii. (2 marks) Verify part iii above using direct substitution iv. (2 marks) -----