CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION SCIENCE/ARTS, BACHELORS OF SCIENCE, BACHELORS OF ARTS(MATHS-ECONS), BACHELORS OF SCIENCE(ECON STATS)

MATH 316: LINEAR ALGEBRA II
STREAMS:BED(ARTS,SCI),BSC (ECONSTAT,MATH \&EECONS)
TIME: 2HRS
DAY/DATE: MONDAY 11/12/2017
11.30 A.M - 1.30 P.M

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

a) Consider the following two bases of \mathbb{R}^{2}
$\left\{e_{1}=(1,0), e_{2}=(0,1)\right\}$ and $\left\{f_{1}=(1,1), f_{2}=(-1,0)\right\}$.Find the transition matrix P from the basis
$\left\{e_{i}\right\}$ to the basis $\left\{f_{i}\right\}$ and Q from the basis $\left\{f_{i}\right\}$ to the basis $\left\{e_{i}\right\}$
b) Given that $A=\left[\begin{array}{lll}2 & -3 & 3 \\ 3 & -4 & 3 \\ 6 & -6 & 5\end{array}\right]$, find the eigenvalues of A^{3}
c) Find the symmetric matrix that correspond to the following quadratic form $q(x, y, z)=x y+y^{2}-4 x z+z^{2}$
d) Let A be an nxn matrix over a field K . show that the mapping $f(X, Y)=X^{T} A Y$ is a bilinear form on K^{n}
e) Prove that similar matrices have the same characteristic polynomial.
(3 marks)
f) State how elementary row operations affect the determinant of a square matrix, hence or otherwise show that if two rows are equal the determinant is zero.
g) Show that if $A=\left[\begin{array}{cc}1 & -1 \\ 3 & 4\end{array}\right]$, then find A^{5}
h) Find the minimal polynomial of the matrix $A=\left[\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4\end{array}\right]$

QUESTION TWO (20 MARKS)

a) Let f be a bilinear form on R^{2} defined by
$f\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=3 x_{1} y_{1}-2 x_{1} y_{2}+4 x_{2} y_{1}-x_{2} y_{2}$. Find
i. The matrix A of f in the basis $\left\{u_{1}=(1,0), u_{2}=(1,1)\right\}$
ii. The matrix B of f in the basis $\left\{v_{1}=(2,1), v_{2}=(1,-1)\right\}$
iii. The change of basis matrix P from the basis $\left\{u_{i}\right\}$ to the basis $\left\{v_{i}\right\}$ and verify that

$$
B=P^{T} A P .
$$

b) Let A be the matrix

$$
\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 5 & 3 \\
1 & 3 & 2
\end{array}\right]
$$

Apply diagonalization algorithm to obtain a matrix P such that $D=P^{T} A P$
c) Consider the basis U of R^{4} spanned by the vectors
$\left\{v_{1}=(1,1,1,1), v_{2}=(1,1,2,4), v_{3}=(1,2,-4,-3)\right\}$, use the Gram Schmidt formula to find an orthonormal basis.

QUESTION THREE (20 MARKS)

a) Given that $A=\left[\begin{array}{cccc}1 & 3 & 0 & 1 \\ 2 & 5 & -3 & 1 \\ 1 & 6 & -2 & 4 \\ 0 & 1 & -3 & 7\end{array}\right]$ determine the number n_{k} and the sum S_{k} of principal minors of order 1, 2 and 4.
b) Let $A=\left[\begin{array}{lll}2 & -3 & 3 \\ 3 & -4 & 3 \\ 6 & -6 & 5\end{array}\right]$
i. Find the characteristic polynomial of A.
ii. Find all the eigenvalues of A and their corresponding eigenvectors.
i. Find
iii. Is A diagonalizable? If yes, Determine the matrices P and D such that $D=P^{-1} A P$ such that D is diagonal.
iv. Find a matrix B such that $B^{2}=A$

QUESTION FOUR (20 MARKS)

a) State Cayley-Hamilton theorem and verify using a linear operator $T: R^{2} \rightarrow R^{2}$ defined by $T\left(x_{1}, x_{2}\right)=\left(4 x_{1}-3 x_{2}, x_{1}+5 x_{2}\right)$ (6 marks)
b) Find the characteristic polynomial and hence the minimal polynomial of the matrix

$$
A=\left[\begin{array}{lllll}
4 & 1 & 0 & 0 & 0 \\
0 & 4 & 1 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 4 & 1 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]
$$

c) Consider the basis of R^{3} consisting of the vectors $y_{1}=(1,0,1), y_{2}=(2,-1,3)$ and

$$
y_{3}=(-1,1,1) \text { and a non singular matrix } P=\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 1 & 0 \\
-1 & 2 & 4
\end{array}\right] \text {. Find the vectors } x_{1}, x_{2}, x_{3} \text { which }
$$

form a basis for \mathbb{R}^{3} so that P is the transition matrix from the basis consisting of the vectors x_{1}, x_{2} and x_{3} to the basis formed by y_{1}, y_{2} and y_{3}
(8 marks)

QUESTION FIVE (20 MARKS)

a) Let $\mathrm{A}=\left[\begin{array}{lllll}4 & 1 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 4\end{array}\right]$ be a 5-square matrix and $I=\{1,2,4\}$ and $J=\{1,3,5\}$ be row and column indices of A respectively.
i. find the minors $\mathrm{A}(\mathrm{I} ; \mathrm{J}), \mathrm{A}\left(\mathrm{I}^{\prime} ; \mathrm{J}^{\prime}\right)$ and their corresponding signed minors
ii. find the minimal polynomial for A
(3 marks)
b) i. Define a complex inner product space.
(2 marks)
ii. Let V be a complex inner product space, verify that
$\left.<u, a v_{1}+b v_{2}>=\bar{a}<u, v_{1}>+\bar{b}<u, v_{2}\right\rangle$
iii. Suppose $\langle u, v\rangle=3+2 i$, evaluate $\langle(3-6 i) u,(5-2 i) v\rangle$
(3 marks)
c) Consider the quadratic form $q(x, y)=3 x^{2}+2 x y-y^{2}$ and the linear substitution $x=s-t$ and $y=s+t$
i. Rewrite $q(x, y)$ in matrix notation and find the matrix notation and find the matrix A representing $q(x, y)$
(1 mark)
ii. Rewrite the linear substitution using matrix notation and find the matrix P corresponding to the substitution
iii. Write the quadratic form $q(s, t)$
(2 marks)
iv. Verify part iii above using direct substitution
(2 marks)

