MATH 0313

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EMBU CAMPUS

EXAMINATION FOR THE AWARD OF DIPLOMA IN EDUCATION

MATH 0313: VECTOR ANALYSIS

STREAMS: DIP. EDUC

TIME: 2 HOURS

DAY/DATE:

INSTRUCTIONS:

- ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS
- ADHERE TO THE INSTRUCTIONS ON THE ANSWER BOOKLET
- DO NOT WRITE ON THE QUESTION PAPER

QUESTION ONE (30 MARKS)

(a)	State the divergent theorem.	[2 marks]
(b)	If $R(t) = x\vec{i} + y\vec{j} + z\vec{k}$	
	Show that $\frac{d\vec{R}}{dt} = \frac{dx\vec{i}}{dt} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$	[5 marks]
(c)	Define an implicit function.	[2 marks]
(d)	Given that	
	$F = x^2 y + y^2 z + xz$	[4 marks]
	Find $\frac{dz}{dx}$ and $\frac{dz}{dy}$	
(e)	Find the Laplace transform of $f(t) = e^{at}$	[3 marks]
(f)	Define	
	Gradient ϕ	[2 marks]

MATH 0313

(g) (i) Let
$$\phi(x, y, z) = 3x^2y - y^3z^2$$
 find $\vec{\nabla}\phi$ at the point $(1, -2, -1)$ [4 marks]

(ii) Let
$$\vec{A} = x^2 z \vec{i} - 2y^3 z^2 \vec{j} + xy^2 z k$$
 find divergence \vec{A} at $(1, -1, 1)$ [5 marks]

(h) Explain what is meant by a Curl of a vector. [3 marks]

QUESTION TWO (20 MARKS)

(a)	Let $\vec{\nabla} = \vec{w} x \vec{r}$. Prove that	
	$\vec{w} = \frac{1}{2} Curl \vec{r}$	[7 marks]
(b)	Define a conservative vector field.	[2 marks]

(c) Show that
$$\vec{F} = (2xy + z^3)i + x^2\vec{y} + 3xz\vec{k}$$
 is a conservative vector field. [6 marks]

(d) Find the scalar potential. [5 marks]

QUESTION THREE (20 MARKS)

(a)	Evaluate the surface integral.	[10 marks]
	$\iint \vec{F} \tilde{n} ds$ where	
	$\vec{F} = 4xz\vec{i} - y\vec{j} + yz\vec{k}$ and <i>S</i> is the surface of the cube bounded by $x = 0, x = 1, y = 1, z = 1$	
	x = 0, x = 1, y = 0, y = 1, z = 0, z = 1	
(b)	Find $\iiint \vec{F}$ dr where	[10 marks]
	$\vec{F} = 2xz\vec{c} - x\vec{j} + y^2\vec{k}$	
	2xzī	
	Where v is the solid region bounded by the forces $x = 0$, $y = 0$, $y = 6$, $z = x^2$, $z = 4$, $x = 2$	

MATH 0313

[2 marks]

[2 marks]

QUESTION FOUR (20 MARKS)

- (a) State the Green's theorem.
- (b) Verify Green's theorem in the plane for the function $\oint_{c} (xy + y^{2}) dx + x^{2} dy$ where c is a closed curve bounded by $y = x_{1}y = x^{2}$
- (c) Show that the polynomial $y = X^2 4x = f(x)$ is continuous and differentiable for all x in the interval $-\infty < x < \infty$

QUESTION FIVE (20 MARKS)

- (a) Suppose that $f(x) = X^{\frac{1}{2}} X^{\frac{1}{2}}$ on $(\partial, 1)$. find the number C that satisfies the conclusion of Rolle's theorem. [7 marks]
- (b) State the stokes theorem.
- (c) Verify stokes theorem for $\vec{A} = (2x y)\vec{c} y\vec{z}\vec{j} y^2z\vec{k}$ where S is the upper half surface of the plane $x^2 + y^2 + z^2 = 1$ and C its boundary. [11 marks]
