CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EMBU CAMPUS

EXAMINATION FOR THE AWARD OF DIPLOMA IN EDUCATION
MATH 0313: VECTOR ANALYSIS
STREAMS: DIP. EDUC
TIME: 2 HOURS
DAY/DATE:
INSTRUCTIONS:

- ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS
- ADHERE TO THE INSTRUCTIONS ON THE ANSWER BOOKLET
- DO NOT WRITE ON THE QUESTION PAPER

QUESTION ONE (30 MARKS)
(a) State the divergent theorem.
(b) If $R(t)=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$

Show that $\frac{d \vec{R}}{d t}=\frac{d x \vec{i}}{d t}+\frac{d y}{d t} \vec{\jmath}+\frac{d z}{d t} \vec{k}$
(c) Define an implicit function.
(d) Given that
$F=x^{2} y+y^{2} z+x z$
Find $\frac{d z}{d x}$ and $\frac{d z}{d y}$
(e) Find the Laplace transform of $f(t)=e^{a t}$
(f) Define

Gradient ϕ
(g) (i) Let $\phi(x, y, z)=3 x^{2} y-y^{3} z^{2}$ find $\vec{\nabla} \phi$ at the point $(1,-2,-1) \quad$ [4 marks]
(ii) Let $\vec{A}=x^{2} z \vec{\imath}-2 y^{3} z^{2} \vec{\jmath}+x y^{2} z \vec{k}$ find divergence \vec{A} at $(1,-1,1) \quad$ [5 marks]
(h) Explain what is meant by a Curl of a vector.

QUESTION TWO (20 MARKS)

(a) Let $\vec{\nabla}=\vec{w} x \vec{r}$. Prove that

$$
\vec{w}=1 / 2 \operatorname{Curl} \vec{r}
$$

[7 marks]
(b) Define a conservative vector field.
(c) Show that $\vec{F}=\left(2 x y+z^{3}\right) i+x^{2} \vec{y}+3 x z \vec{k}$ is a conservative vector field. [6 marks]
(d) Find the scalar potential.
[5 marks]

QUESTION THREE (20 MARKS)

(a) Evaluate the surface integral.
$\iint \vec{F} \tilde{n} \overrightarrow{d s}$ where
$\vec{F}=4 x z \vec{\imath}-y \vec{\jmath}+y z \vec{k}$ and S is the surface of the cube bounded by
$x=0, x=1, y=1, z=1$
$x=0, x=1, y=0, y=1, z=0, z=1$
(b) Find $\iiint \vec{F}$ dr where

$$
\vec{F}=2 x z \vec{c}-x \vec{\jmath}+y^{2} \vec{k}
$$

$2 x z \vec{l}$
Where v is the solid region bounded by the forces $x=0, y=0, y=6, z=x^{2}, z=4, x=2$

QUESTION FOUR (20 MARKS)

(a) State the Green's theorem.
(b) Verify Green's theorem in the plane for the function $\oint_{c}\left(x y+y^{2}\right) d x+x^{2} d y$ where c is a closed curve bounded by $y=x_{1} y=x^{2}$
(c) Show that the polynomial $y=X^{2}-4 x=f(x)$ is continuous and differentiable for all x in the interval $-\infty<x<\infty$

QUESTION FIVE (20 MARKS)

(a) Suppose that $f(x)=X^{1 / 2}-X^{1 / 2}$ on $(\partial, 1)$. find the number C that satisfies the conclusion of Rolle's theorem.
(b) State the stokes theorem.
[2 marks]
(c) Verify stokes theorem for $\vec{A}=(2 x-y) \vec{c}-y \vec{z} \vec{\jmath}-y^{2} z \vec{k}$ where S is the upper half surface of the plane $x^{2}+y^{2}+z^{2}=1$ and C its boundary.
[11 marks]

