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 ADHERE TO THE INSTRUCTIONS ON THE ANSWER BOOKLET 

 DO NOT WRITE ON THE QUESTION PAPER 

 

 

QUESTION ONE (30 MARKS) 

(a) State the divergent theorem.      [2 marks] 

(b) If 𝑅 𝑡 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘   

 Show that 
𝑑𝑅  

𝑑𝑡
=

𝑑𝑥 𝑖 

𝑑𝑡
+

𝑑𝑦

𝑑𝑡
𝑗 +

𝑑𝑧

𝑑𝑡
𝑘        [5 marks] 

(c) Define an implicit function.       [2 marks] 

(d) Given that  

 𝐹 = 𝑥2𝑦 + 𝑦2𝑧 + 𝑥𝑧        [4 marks] 

 Find 
𝑑𝑧

𝑑𝑥
 𝑎𝑛𝑑 

𝑑𝑧

𝑑𝑦
 

(e) Find the Laplace transform of 𝑓 𝑡 = 𝑒𝑎𝑡      [3 marks] 

(f) Define  

 Gradient 𝜙         [2 marks] 
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(g) (i) Let 𝜙 𝑥, 𝑦, 𝑧 = 3𝑥2𝑦 − 𝑦3𝑧2 find ∇   𝜙 at the point  1, −2, −1  [4 marks] 

 (ii) Let 𝐴 = 𝑥2𝑧𝑖 − 2𝑦3𝑧2𝑗 + 𝑥𝑦2𝑧𝑘      find divergence 𝐴  at  1, −1, 1  [5 marks] 

(h) Explain what is meant by a Curl of a vector.     [3 marks] 

 

QUESTION TWO (20 MARKS) 

(a) Let ∇   = 𝑤   𝑥𝑟 . Prove that   

 𝑤   = ½𝐶𝑢𝑟𝑙 𝑟          [7 marks] 

(b) Define a conservative vector field.      [2 marks] 

(c) Show that 𝐹 =  2𝑥𝑦 + 𝑧3 𝑖 + 𝑥2𝑦 + 3𝑥𝑧𝑘   is a conservative vector field. [6 marks] 

(d) Find the scalar potential.       [5 marks] 

 

QUESTION THREE (20 MARKS) 

(a) Evaluate the surface integral.       [10 marks] 

  𝐹 𝑛 𝑑𝑠      where  

 𝐹 = 4𝑥𝑧𝑖 − 𝑦𝑗 + 𝑦𝑧𝑘   and 𝑆 is the surface of the cube bounded by    

  𝑥 = 0, 𝑥 = 1, 𝑦 = 1, 𝑧 = 1 

 𝑥 = 0, 𝑥 = 1, 𝑦 = 0, 𝑦 = 1, 𝑧 = 0, 𝑧 = 1   

(b) Find  𝐹  dr where        [10 marks] 

 𝐹 = 2𝑥𝑧𝑐 − 𝑥𝑗 + 𝑦2𝑘   

 2𝑥𝑧𝑖  

 Where v is the solid region bounded by the forces      

 𝑥 = 0, 𝑦 = 0, 𝑦 = 6, 𝑧 = 𝑥2 , 𝑧 = 4,   𝑥 = 2 
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QUESTION FOUR (20 MARKS) 

(a) State the Green’s theorem.       [2 marks] 

(b) Verify Green’s theorem in the plane for the function dydx xyxy
c

22







  where c is a 

 closed curve bounded by 𝑦 = 𝑥1𝑦 = 𝑥2 

(c) Show that the polynomial 𝑦 = 𝑋2 − 4𝑥 = 𝑓(𝑥) is continuous and differentiable for all 𝑥 in 

 the interval −∞ < 𝑥 < ∞ 

QUESTION FIVE (20 MARKS) 

(a) Suppose that 𝑓 𝑥 = 𝑋½ − 𝑋½ on  𝜕, 1 .  find the number C that satisfies the conclusion 

 of Rolle’s theorem.        [7 marks] 

(b) State the stokes theorem.       [2 marks] 

(c) Verify stokes theorem for 𝐴 =  2𝑥 − 𝑦 𝑐 − 𝑦𝑧 𝑗 − 𝑦2𝑧𝑘   where S is the upper half surface 

 of the plane 𝑥2 + 𝑦2 + 𝑧2 = 1 and C its boundary.    [11 marks] 
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