CHUKA

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE, ART \& EDUCATION

MATH 241: PROBABILITY AND STATISTICS I

STREAMS: B.Sc B.Ed BA
TIME: 2 HOURS
DAY/DATE: FRIDAY 8/12/2017
8.30 A.M - 10.30 A.M.

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions.

QUESTION ONE [30 MARKS]

(a) Define the following terms as used in statistics;
(i) Random experiment
(ii) Discrete random variable
(iii)Continuous random variable
(iv)Sample space
(b) A discrete random variable X has a probability distribution given by
$f(x)= \begin{cases}\frac{2}{3}\left(\frac{1}{3}\right)^{x} & x=0,1,2,3 \ldots \\ 0 & \text {,otherwise }\end{cases}$
(i) Show that $f(x)$ is probability distribution function.
[2 Marks]
(ii) Find the cumulative distribution function (cdf) of X .
(iii)Determine the m.g.f of X .
(iv) Using (iii) compute $\mathrm{E}(\mathrm{X})$ and standard deviation of X .
(c) The loaves of ryre bread distribution to local stores by a certain bakery have an average length of 30 cm and standard deviation is 2 cm . Assuming the length are normally distributed, what is the probability of the loaves being;
(i) Longer than 31.5 cm
(ii) Between 29.3 and 33.5 cm

MATH 241

(iii)Shorter than 25.5 cm
[6 Marks]
(d) A random variable X has a pd.f $f(x)= \begin{cases}k_{[}\left[x^{1 / 2}-x\right], & 0 \leq x \leq 1 \\ 0 & \text {, elsewhere }\end{cases}$

Find,
(i) The value of k
[2 Marks]
(ii) The mean and variance of X
(iii) $E(2 x+3)^{2}$
(e) A random variable X has the following probability distribution functions

x	1	2	3	4	5	6	7
$\mathrm{f}(\mathrm{x})$	k	2 k	2 k	3 k	k^{2}	$2 \mathrm{k}^{2}$	$7 \mathrm{k}^{2}+\mathrm{k}$

(i) Find the value of k
[2 Marks]
(ii) Evaluate $p(0<x<5)$

QUESTION TWO [20 MARKS]

The m.g.f of random variable X is given by $M_{x}(t)=\left[\frac{7}{10} e^{t}+\frac{3}{10}\right]^{9}$
Find
(i) $E(X)$ and $\operatorname{Var}(x)$
(ii) m.g.f of the random variable $Y=6 x+5$
(iii) $P[X=3$ or $X=6]$
[10 Marks]
(b) Suppose that 35% of item produced by a factory are defective, if 20 items are inspected, what is the probability that the number of defective items is between 12-15 inclusive. Use normal approximation method.
[10 Marks]

QUESTION THREE

(a) The probability density function $\mathrm{f}(\mathrm{x})$ of a continuous random variable x is given by $f(x)=\left\{\begin{array}{cl}2(3-x) & 2 \leq x<k \\ 0 & , \text { elsewhere }\end{array}\right.$

Where k is a constant
(i) Find the value of k for $\mathrm{f}(\mathrm{x})$ to be a valid probability density function.
(ii) Evaluate $p(2.5 \leq x)$
[3 Marks]
(b) A discrete random X has probability mass function $f(x)$ given by
$f(x)=\left\{\begin{array}{lc}\frac{1}{50} x(x+2), & \quad \text { otherwise }\end{array}\right.$

Determine

(i) Mean of X
[2 Marks]
(ii) Variance of X
[3 Marks]
(iii) $E\left(2 X^{2}-3 X+4\right.$
[2 Marks]
(c) (i) Suppose the probability density function $\mathrm{f}(\mathrm{x})$ of a continuous random variable X is given by $f(x)= \begin{cases}\frac{1}{12}(2 x-1) & 1 \leq x \leq 4 \\ 0 & , \text { elsewhere }\end{cases}$

Find the median of X
[3 Marks]
(ii) Find the mode of a continuous random variable X whose probability density function $f(x)$ is given by $f(x)=\left\{\begin{array}{cc}6 x(1-x), & 0<x 1 \\ 0 & \text { elsewhere }\end{array}\right.$

QUESTION FOUR

(a) (i) A random variable X has a poisson distribution such that $2 P(X=1)=1 P(X=2)$

Find $P(x=3)$
[5 Marks]
(ii) Given the probability distribution function $\mathrm{f}(\mathrm{x})$ of a random variable X having a poisson distribution as $f(x)=\left\{\begin{array}{cc}\frac{\lambda^{x} e^{-\lambda}}{x!} & x=0,1,2 \ldots \\ 0, & \text { otherwise }\end{array}\right.$

Derive the mean and variance of X .
[8 Marks]
(b) The probability that a student will be caught cheating during an examination is 0.9 . find the probability that;
(i) A given student will be caught cheating for the first time during his third attempt to cheat.
[2 Marks]
(ii) A student will be caught cheating before his third attempt to cheat.
[2 Marks]
(c) The moment generating function of a random variable X having a gamma distribution with parameters α and β is given by $M_{x}(t)=\left[\frac{1}{1-\beta t}\right]^{\alpha}$

Use $M_{x}(t)$ to find the mean of X .
[4 Marks]

MATH 241

QUESTION FIVE [20 MARKS]

(a) If X has an exponential distribution given by

$$
f(x, \lambda)=\left\{\begin{array}{cl}
\lambda e^{-\lambda x} & 0<x<\infty \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find (i) $\mathrm{M}_{\mathrm{x}}(\mathrm{t})$ (ii) $\mathrm{E}(\mathrm{X})$ and (iii) $\operatorname{var}(\mathrm{X})$
[6 Marks]
(b) A random variable X has a p.d.f

$$
f(x) \begin{cases}K\left(\frac{1}{4}\right)_{x} & \mathrm{x}=1,2,3 \\ 0, & \text { elsewhere }\end{cases}
$$

Find(i) The value of k
(ii) The f.m.g.f of X
(iii)Hence find the mean and variance X
(c) Given that $\begin{array}{rr}f(x)=1 / 3 & -1<x<2 \\ 0, & \text { elsewhere }\end{array}$

Find the third moment about the mean $\left(\mu_{3}\right)$.
(d) State the characteristics of a Bernoulli distribution.

