MATH 0223

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DIPLOMA IN

MATH 0223: LINEAR ALGEBRA I

STREAMS: DIP

TIME: 2 HOURS

DAY/DATE:

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE

		[-2	-1]		[0]	3]	
(a)	Given that $A =$	1	0	and B	2	0	solve for <i>x</i> in the equations: $2x + 3A = B$
		L 3	-4		L-4	-11	

[5 marks]

- (b) Differentiatebetween linear combination and linear dependence. [5marks]
- (c) Find the general vector on the pane through the point (2, -1, 2), (1, 2, 1) and (3, 1, 3).

[5 marks]

(d) Find the angle between the vectors
$$u$$
 and v , if $u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $v = \begin{pmatrix} 4 \\ 5 \\ -1 \end{pmatrix}$. [5 marks]

(e) Write the augmented matrix of the following system of equations hence solve the system of equations by crammers rule. [7 marks]

3x + y - 2z = 2x - 2y + z = 32x - y - 3z = 3

(f) Point P divides the line joining A(-2, 5) to B(4, 2) internally in the ratio 2:1. Find the coordinates of P. [4 marks]

MATH 0223

QUESTION TWO

(a)	Find the scalar product of $P = 2i + 4j + k$ and k	Q = i + j + l, hence find the angle
	between P and Q.	[5 marks]
(b)	If B is a set of elements such that $B = \{(x, y); x\}$	= $2y$ }. Test if B is a subspace of R^2 .
		[5 marks]
(c)	Find the Eigen values and Eigen vectors of $\begin{vmatrix} 1 \\ -1 \end{vmatrix}$	2 4 [10 marks]

QUESTION THREE

(a)	Test whether the following vectors are linearly dependent.	[10 marks]	
	(3, 1, 2, 4), (1, 1, 1, 1), (4, 0, 2, 6)and(1, 2, 1, 0)		

(b)	Determine the inverse of the matrix below	[10 marks]
	$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix}$	

QUESTION FOUR

(a)	Reduce the matrix below to the reduced row echlon form.						2 marks]
	1	-1	1	0	2		
	2	-2	0	2	2		
	-1	1	2	-3	1		
	-2	2	1	-3	-1		

(b) Show that

- (i) (5, 3, 1) is a linear combination of (5, 0, 0), (0, 1, 1) and (0, 0, 1). [4 marks]
- (ii) (0, 0, 0) is a linear combination of (2, 1, 1), (1, 0, 2) and (-1, -1, 1). [4 marks]
