

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DIPLOMA IN

MATH 0223: LINEAR ALGEBRA I

STREAMS: DIP

TIME: 2 HOURS

DAY/DATE:

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE

(a) Given that $A=\left[\begin{array}{cc}-2 & -1 \\ 1 & 0 \\ 3 & -4\end{array}\right]$ and $B\left[\begin{array}{cc}0 & 3 \\ 2 & 0 \\ -4 & -1\end{array}\right]$ solve for x in the equations: $2 x+3 A=B$ [5 marks]
(b) Differentiatebetween linear combination and linear dependence.
[5marks]
(c) Find the general vector on the pane through the point $(2,-1,2),(1,2,1)$ and $(3,1,3)$.
[5 marks]
(d) Find the angle between the vectors u and v, if $u=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $v=\left(\begin{array}{c}4 \\ 5 \\ -1\end{array}\right) . \quad$ [5 marks]
(e) Write the augmented matrix of the following system of equations hence solve the system of equations by crammers rule.
[7 marks]
$3 x+y-2 z=2$
$x-2 y+z=3$
$2 x-y-3 z=3$
(f) Point P divides the line joining $A(-2,5)$ to $B(4,2)$ internally in the ratio $2: 1$. Find the coordinates of P .

QUESTION TWO

(a) Find the scalar product of $P=2 i+4 j+k$ and $Q=i+j+l$, hence find the angle between P and Q .
[5 marks]
(b) If B is a set of elements such that $B=\{(x, y) ; x=2 y\}$. Test if B is a subspace of R^{2}.
[5 marks]
(c) Find the Eigen values and Eigen vectors of $\left|\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right|$

QUESTION THREE

(a) Test whether the following vectors are linearly dependent.
[10 marks]
$(3,1,2,4),(1,1,1,1),(4,0,2,6)$ and $(1,2,1,0)$
(b) Determine the inverse of the matrix below
[10 marks]
$\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right|$

QUESTION FOUR

(a) Reduce the matrix below to the reduced row echlon form.

1	-1	1	0	2
2	-2	0	2	2
-1	1	2	-3	1
-2	2	1	-3	-1

(b) Show that
(i) $(5,3,1)$ is a linear combination of $(5,0,0),(0,1,1)$ and $(0,0,1)$. [4 marks]
(ii) $(0,0,0)$ is a linear combination of $(2,1,1),(1,0,2)$ and $(-1,-1,1)$. [4 marks]

