UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF DEGREE OF BACHELOR OF EDUCATION (ARTS, SCIENCE) ,BACHELOR OF ARTS (MATHS ECONS), BACHELOR OF SCIENCE (ECON STATS)

MATH 222: VECTOR ANALYSIS

STREAMS:
TIME: 2 HOURS
DAY/DATE: MONDAY 11/12/2017
11.30 A.M - 1.30 P.M

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: ($\mathbf{3 0}$ MARKS)

(a) Show that addition of two vectors is commutative
(b) Determine the unit vector perpendicular to the plane of $\vec{A}=2 \hat{i}-6 \vec{j}-3 \vec{k}$ and

$$
\vec{B}=4 \hat{i}+3 \vec{j}-\vec{k}
$$

(c) If $\vec{v}=\vec{\omega} \times \vec{r}$, prove that $\vec{\omega}=\frac{1}{2}(\vec{\nabla} \times \vec{v})$, where $\vec{\omega}$ is a constant vector
(d) Using vector method find the area of the triangle having vertices
$P(3,-1,2), Q(1,-1,-3), R(4,-3,1)$
(e) Given $\phi(x, y, z)=2 x^{3} y^{2} z^{4}$, calculate;

$$
\text { (i) } \operatorname{Div}(\operatorname{grad} \phi)
$$

(ii) $\operatorname{Curl}(\operatorname{grad}(\phi))$
(f)) If $\overrightarrow{\mathrm{A}}=\left(3 \mathrm{x}^{2}+6 \mathrm{y}\right) \hat{\mathrm{i}}-14 \mathrm{yz} \hat{\jmath}+20 \mathrm{xz}^{2} \hat{\mathrm{k}}$, evaluate $\int_{c} \vec{A} \cdot d r$ from $(0,0,0)$ to $(1,1,1)$ along the straight lines from $(0,0,0)$ to $(1,0,0)$, then to $(1,1,0)$, and then to $(1,1,1)$
(g) Given that $\emptyset=45 x^{2} y$, evaluate its volume integral such that the volume space is bounded by planes $4 x+2 y+z=8, x=0, y=0, z=0$.
(h) Give the transformation equations from cylindrical to rectangular coordinate system (2 marks)

QUESTION TWO: (20 MARKS)

(a) Find the equation for the tangent to the surface $2 x z^{2}-3 x y-4 x=7$ at the point $(1,-1,2)(5$ marks $)$
(b) (i) Show that $\nabla \cdot \nabla \varnothing=\nabla^{2} \emptyset$, where $\nabla^{2}=\frac{\delta^{2}}{\delta x^{2}}+\frac{\delta^{2}}{\delta y^{2}}+\frac{\delta^{2}}{\delta z^{2}}$ denotes the Laplacian operator.(4 marks)
(ii) Hence show that $\nabla^{2}(\ln r)=\frac{1}{r^{2}}$
(6 marks)
(c) The position vector of a particle in space is given by the equation $\vec{s}=2 \cos 2 t \hat{\imath}+2 \sin 2 t \hat{\jmath}+$ $3 t \hat{k}$
(i) Find the equations of the velocity and acceleration at any time t
(ii) Find the initial speed of the particle
(iii)Find the length along the curve of the trajectory from the point $(2,0,0)$ to $(2,0, \pi)$

QUESTION THREE: (20 MARKS)

(a) (i) If \vec{F} is a conservative vector field, show that $\operatorname{Curl} \vec{F}=0$
(ii)show that $\vec{A}=\left(6 x y+z^{3}\right) \hat{i}+\left(3 x^{2}-z\right) \vec{j}+\left(3 x z^{2}-y\right) \vec{k}$ is irrotational (3marks)
(ii) Hence show that the vector \vec{A} in (a (ii)) above can be expressed in as a gradient of a scalar function \varnothing
(iii)If Find the work done in moving an object in this field from $(0,1,-1)$ to $\left(\frac{\pi}{2},-1,2\right) \quad$ (2marks)
(b) State without proof the Stoke's theorem. Hence evaluate the line integral $\int_{C} \vec{A} \cdot \mathrm{~d} \vec{r}$ where $\vec{A}=x z \hat{\mathrm{i}}+\mathrm{yz} \hat{\jmath}+\mathrm{xy} \hat{\mathrm{k}}$ and c curve of the intersection of the sphere $x^{2}+y^{2}+z^{2}=4$ and the cylinder $x^{2}+y^{2}=1$ above the $x-y$ plane

QUESTION FOUR: (20 MARKS)

State and verify the Divergence theorem for the flux given by $\vec{F}=x^{2} \hat{i}+y^{2} \vec{j}+z^{2} \vec{k}$ on the surface S bounded by the sphere $x^{2}+y^{2}+z^{2}=1$ and the planes $z=-1$ and $z=1$ (20 marks)

QUESTION FIVE: (20 MARKS)

(a) State without proofthe Frenet-Serret formulas
(b) Given the space curve defined by $x=e^{t}, y=e^{t} \sin t, z=e^{t} \cos t$. Find
(i) The tangent vector $\overrightarrow{\mathrm{T}}$
(ii) The principal normal $\overrightarrow{\mathrm{N}}$
(iii) The Binormal \vec{B}
(2 marks)
(iv)The curvature κ (2 mark)
(c) Verify the Green's Theorem for $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$, where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$

