CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF DEGREE OF BACHELOR OF EDUCATION (ARTS, SCIENCE) ,BACHELOR OF ARTS (MATHS ECONS), BACHELOR OF SCIENCE (ECON STATS)

MATH 222: VECTOR ANALYSIS

STREAMS:

TIME: 2 HOURS

11.30 A.M - 1.30 P.M

DAY/DATE: MONDAY 11/12/2017 INSTRUCTIONS:

- Answer question **ONE** and **TWO** other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

(a) Show that addition of two vectors is commutative	(2 marks)
(b) Determine the unit vector perpendicular to the plane of $\vec{A} = 2\hat{i} - 6\hat{j} - 3\hat{k}$ and	
$\vec{B} = 4\hat{i} + 3\hat{j} - \vec{k}$	(3 marks)
(c) If $\vec{v} = \vec{\omega} \times \vec{r}$, prove that $\vec{\omega} = \frac{1}{2} (\vec{\nabla} \times \vec{v})$, where $\vec{\omega}$ is a constant vector	(4 marks)
(d) Using vector method find the area of the triangle having vertices	
P(3, -1, 2), Q(1, -1, -3), R(4, -3, 1)	(4 marks)
(e) Given $\phi(x, y, z) = 2x^3 y^2 z^4$, calculate;	
(i) $Div(grad \phi)$	(3 mks)
(ii) $Curl(grad(\phi))$ (2 mks)	
(f)) If $\vec{A} = (3x^2 + 6y)\hat{i} - 14yz\hat{j} + 20xz^2\hat{k}$, evaluate $\int_{C} \vec{A} \cdot dr$ from (0,0,0) to (1,2)	l,1) along
the straight lines from $(0,0,0)$ to $(1,0,0)$, then to $(1,1,0)$, and then to $(1,1,1)$	(5mks)

MATH 222

- (g) Given that $\phi = 45x^2y$, evaluate its volume integral such that the volume space is bounded by planes 4x + 2y + z = 8, x = 0, y = 0, z = 0. (5 marks)
- (h) Give the transformation equations from cylindrical to rectangular coordinate system

(2 marks)

(1 mark)

QUESTION TWO: (20 MARKS)

(a) Find the equation for the tangent to the surface $2xz^2 - 3xy - 4x = 7$ at the point (1,-1,2) (5 marks)

(b) (i) Show that $\nabla \cdot \nabla \emptyset = \nabla^2 \emptyset$, where $\nabla^2 = \frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2}$ denotes the Laplacian operator.(4 marks) (ii) Hence show that $\nabla^2(\ln r) = \frac{1}{r^2}$ (6 marks)

(c) The position vector of a particle in space is given by the equation $\vec{s} = 2 \cos 2t \,\hat{\imath} + 2 \sin 2t \,\hat{\jmath} + 3t \hat{k}$

- (i) Find the equations of the velocity and acceleration at any time t (2 marks)
- (ii) Find the initial speed of the particle
- (iii)Find the length along the curve of the trajectory from the point (2,0,0) to (2,0, π) (2 marks)

QUESTION THREE: (20 MARKS)

(a) (i) If \vec{F} is a conservative vector field, show that Curl $\vec{F} = 0$ (3 marks) (ii) show that $\vec{A} = (6xy + z^3)\hat{i} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$ is irrotational (3 marks) (ii) Hence show that the vector \vec{A} in (a (ii)) above can be expressed in as a gradient of a scalar function \emptyset (6 marks) (iii) If Find the work done in moving an object in this field from (0,1,-1) to $(\frac{\pi}{2},-1,2)$ (2 marks)

(b) State without proof the Stoke's theorem. Hence evaluate the line integral $\int_C \vec{A} \cdot d\vec{r}$ where $\vec{A} = xz\hat{i} + yz\hat{j} + xy\hat{k}$ and c curve of the intersection of the sphere $x^2 + y^2 + z^2 = 4$ and the cylinder $x^2 + y^2 = 1$ above the x-y plane (6marks)

QUESTION FOUR: (20 MARKS)

State and verify the Divergence theorem for the flux given by $\vec{F} = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}$ on the surface S bounded by the sphere $x^2 + y^2 + z^2 = 1$ and the planes z = -1 and z = 1 (20 marks)

QUESTION FIVE: (20 MARKS)

(a) State without proof the Frenet-Serret formulas	(3 marks)
(b) Given the space curve defined by $x = e^t$, $y = e^t \sin t$, $z = e^t \cos t$. Find	
(i) The tangent vector \vec{T}	(3 marks)
(ii) The principal normal \vec{N}	(3 marks)

MATH 222

(iii) The Binormal \vec{B}	(2 marks)
(iv)The curvature κ	(2 mark)
(c) Verify the Green's Theorem for $\int_C (xy + y^2)dx + x^2dy$,	where C is the closed curve of
the region bounded by $y = x$ and $y = x^2$	(7 marks)