

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

MATH 125: DISCRETE MATHEMATICS

STREAMS:
TIME: 2 HOURS
DAY/DATE: THURSDAY 14/12/2017
2.30 P.M - 4.30 P.M

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS

a) Determine the validity of the following argument
S_{1} : Some crazy people are dangerous
S_{2} : All fanatics are crazy
Conclusion: some fanatics are not dangerous.
b) Prove the proposition that the sum of n positive even integers is $\frac{n(n+1)}{2} \quad$ (4 marks)
c) Find all the integers such that $2<8-3 n \leq 18$
d) Give an example of a non-trivial relation on the set $A=\{1,2,3\}$ which is i. Both symmetric and antisymmetric
ii. Neither symmetric nor antisymmetric
e) Solve the linear congruence equation $4 x \equiv 6(\bmod 10)$
f) Find the product of the polynomials $f(x)=4 x^{3}-2 x^{2}+3 x-1$ and $g(x)=3 x^{2}-x-4$ over Z_{5}
g) Prove that $(a+b)^{\prime}=a^{\prime} * b^{\prime}$
h) Given a binary on the set of integers given by $a * b=a+b-a b$.show that * is commutative and associative

QUESTION TWO (20 MARKS)

a) Let $A=\{1,2,3\} B=\{a, b, c, d\}$ and $C=\{x, y, z, w\}$. Suppose R and S are relations from A to B and from B to C respectively defined by $R=\{(1, a),(2, a),(2, c),(2, d),(3, b)\}$ and $S=\{(a, x),(a, z),(c, w),(d, y)\}$.
i. Draw an arrow diagram to represent the relation $R^{\circ} S$ (2 marks)
ii. Show that the product of the matrix representation of R and S has the same representation as the matrix $R^{\circ} S$ (4 marks)
iii. Find the domain and range of $R^{\circ} S$
b) Let $S=\{1,2, \ldots, 9\}$ and R be a relation on S defined by $(a, b) \approx(c, d)$ if and only if $a+d=b+c$.
i. Show that \approx is an equivalence relation (6 marks)
ii. Find the equivalence class of $[2,5]$
c) Use Venn diagrams to determine the validity of the following arguments
S_{1} : Some innocent people go to Jail
S_{2} : Mary is innocent
S_{3} :All people in jail are bad people
Conclusion: Mary is not a bad person.
(4 marks)

QUESTION THREE(20 MARKS)

a) Use mathematical induction to prove that 57 divide $\mathrm{n}=0 \quad 7^{n+2}+8^{2 n+1} \quad$ (6 marks)
b) Let $\mathrm{a}=195$ and $\mathrm{b}=968$. Use the division algorithm to find the $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ and therefore find integers m and n such that $d=a m+b n$ (6 marks)
c) Consider the third order homogeneous recurrence relation $a_{n}=6 a_{n-1}-12 a_{n-2}+8 a_{n-3}$
i. Find the general solution
(4 marks)
ii. Find the initial solution given $a_{0}=3, a_{1}=4, a_{2}=12$

QUESTION FOUR (20 MARKS)

a) Solve the congruence equation $f(x)=26 x^{4}-31 x^{3}+46 x^{2}-76 x+57 \equiv 0(\bmod 8)$
b) Consider the Boolean algebra D_{210}
i. Find its elements and draw its lattice diagram
ii. Find the set A of atoms
(2 marks)
iii. Find two sub-algebras with 8 elements (2 marks)
iv. Is $X=\{1,2,6,210\}$ a sub-lattice or a sub-algebra? Explain. (2 marks)
v. Do as part (iv) above for $Y=\{1,2,3,6\}$

QUESTION FIVE (20 MARKS)

a) Prerequisites in a college are partial ordering of available classes. Denote A is a requisite of B by $\boldsymbol{A} \prec \boldsymbol{B}$. Let C be the ordered set of mathematics courses and their prerequisite as shown below.

class	Math 101	Math 201	Math 250	Math 251	Math 340	Math 341	Math 450	Math 500
Prerequisite	None	Math 101	Math 101	Math 250	Math 201	Math 340	Math 201,250	Math 250,251

i. Draw with explanations the Hasse diagram for the partial ordering of the classes
(5 marks)
ii. Find all the minimal and maximal elements of C and verify them
(4 marks)
iii. Does C have a first or last element? Explain
b) Let E be the equation $x+y+z=18$. Find the number of non-negative solutions of E such that $x>7, y>8, z>9$.

