

INSTRUCTIONS:

- Answer Question ONE (Compulsory) and any other TWO

QUESTION ONE [30 MARKS]

(a) Distinguish between a simple and a compound statement.
[2 Marks]
(b) Define the following type of numbers. Give an example in each case.
(i) Integers
(ii) Rational
(iii)Irrational
(iv) Complex
(c) Given $f(x)=x+\frac{3}{x}$, evaluate
(i) $f(-3)$
(ii) $f(2)$
(iii) $\mathrm{f}(1)-\mathrm{f}(3)$
(iv) $f\left(x^{2}\right)$
[4 Marks]
(d) In a class of 42 students, 30 of them take Mathematics and 25 take Chemistry. How many students take both subjects? Represent your answer on a venn diagram.
[5 Marks]
(e) Expand $(x+y)^{4}$
[3 Marks]
(f) How many arrangements are there of the letter of the word SUCCESS?

MATH 0121

(g) Given $U=\{0,3,6,9,10,12,13\}$

$$
A=\{0,3,10\}
$$

$$
B=\{3,10,12\}
$$

Find (i) $A \cap B$
(ii) $\mathrm{A} \cup \mathrm{B}$
(iii) $A^{c} U B^{c}$
(iv) $A^{c} \cap B^{c}$
(v) $(A \cup B) \cap A^{c}$
[5 Marks]
(h) Given $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-5$
$g(x)=3-2 x$
Evaluate
(i) $\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
(ii) $f \circ g(2)$
[3 Marks]

QUESTION TWO

(a) Prove $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
[5 Mark]
(b) Given $f(x)=6 x-2$
$g(x)=2 x+4$
Evaluate
(i) $f+g(-1)$
[2 Marks]
(ii) $f(2 x)-4 g(x)$
[4 Marks]
(iii) $\operatorname{fog}(x)$
[3 Marks]
(iv) gof (x)
(c) Classify the following numbers
(i) 2
(ii) -1
(iii) $\sqrt{-3}$
[3 Marks]

QUESTION THREE

(a) A committee of 9 members is to be formed from 8 parents and 6 teachers and the principal. How many ways can the committee be formed in order to include;
(i) The principal
(ii) The principal and 5 parents
[10 Marks]
(b) Construct a truth table to verify if the statements $\sim p \vee \sim q$ and $\sim p(\wedge q)$ are equivalent.
[5 Marks]
(c) Find the value of K such that the sequence is an AP
$K-1, K+3,3 K-1$
[5 Marks]

MATH 0121

QUESTION FOUR

(a) In an AP of 25 terms, $4^{\text {th }}$ term is $4,22^{\text {nd }}$ term is 5 , find the sum of the AP.
(b) Given that
$g(x)= \begin{cases}x+5 & \text { if } x \leq-3 \\ -1 & \text { if }-3<x \leq 0 \\ 2-x & \text { if } x>0\end{cases}$
Find
(i) $g(-1)$
(ii) $g(-4)$
(iii) $g(2)$
(iv) $g(0)$
(v) $g(10)$
[5 Marks]
(c) Show that $\frac{1+\cos \theta}{\sin \theta}=\frac{\sin \theta}{1-\cos \theta}$
[5 Marks]
(d) Solve for n in $n_{C 2}=28$
[5 Marks]

QUESTION FIVE

(a) Peter has five friends. In how many ways can he invite at least 3 of his friends to his birthday party?
(b) How many terms at least of the AP $1,4,7,10 \ldots$ Are needed to give a sum greater than 590 from the first term of the AP.
(c) Solve $6 \sin \theta+\frac{1}{\sin \theta}=5$
(d) Given $f(x)=2 x^{2}+1$

$$
g(x)=x+3, f \text { ind }
$$

(i) $\operatorname{fog}(x)$
(ii) $f o f(x)$
(iii) $\operatorname{gog}(x)$
[6 Marks]

