MATH 0121

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DIPLOMA IN BRIDGING

MATH 0121: INTRODUCTORY MATHEMATICS

STREAMS: DIP IN BRIDGING	TIME: 2 HOURS
DAY/DATE: THURSDAY 7/12/2017	2.30 P.M - 4.30 P.M.
INSTRUCTIONS:Answer Question ONE (Compulsory) and any other T	WO
QUESTION ONE [30 MARKS] (a) Distinguish between a simple and a compound statement.	[2 Marks]
 (b) Define the following type of numbers. Give an example in each (i) Integers (ii) Rational (iii)Irrational (iv)Complex 	ch case. [4 Marks]
(c) Given $f(x) = x + \frac{3}{x}$, evaluate (i) $f(-3)$ (ii) $f(2)$ (iii) $f(1) - f(3)$ (iv) $f(x^2)$	[4 Marks]
(d) In a class of 42 students, 30 of them take Mathematics and students take both subjects? Represent your answer on a venn	
(e) Expand $(x + y)^4$	[3 Marks]
(f) How many arrangements are there of the letter of the word SU	UCCESS? [4 Marks]

(g) Given U = $\{0, 3, 6, 9, 10, 12, 13\}$ A = $\{0, 3, 10\}$ B = $\{3, 10, 12\}$		
Find (i) $A \cap B$ (ii) $A \cup B$ (iii) $A^{c} \cup B^{c}$ (iv) $A^{c} \cap B^{c}$ (v) $(A \cup B) \cap A^{c}$	[5 Marks]	
(h) Given $f(x) = 3x - 5$ g(x) = 3 - 2x		
Evaluate (i) $f(x) + g(x)$ (ii) fog (2)	[3 Marks]	
QUESTION TWO (a) Prove $AU(B \cap C) = (A \cup B) \cap (A \cup C)$ (b) Given $f(x) = 6x - 2$ g(x) = 2x + 4	[5 Mark]	
Evaluate (i) $f + g(-1)$ (ii) $f(2x) - 4g(x)$ (iii) fog (x) (iv) gof (x)	[2 Marks] [4 Marks] [3 Marks] [3 Marks]	
(c) Classify the following numbers (i) 2 (ii) -1 (iii) $\sqrt{-3}$	[3 Marks]	
QUESTION THREE(a) A committee of 9 members is to be formed from 8 parents and 6 teachers and the principal. How many ways can the committee be formed in order to include;(i) The principal		
(ii) The principal and 5 parents	[10 Marks]	
(b) Construct a truth table to verify if the statements ~ $p \lor ~ q$ and ~ $p(\land q)$ are equal (b)	ivalent. [5 Marks]	
 (c) Find the value of K such that the sequence is an AP K - 1, K + 3, 3K - 1 	[5 Marks]	

MATH 0121

QUESTION FOUR

(a) In an AP of 25 terms, 4^{th} term is 4, 22^{nd} term is 5, find the sum of the AP. [5 Marks] (b) Given that

(x + 5	if $x \le -3$
$g(x) = \begin{cases} x+5\\ -1 \end{cases}$	if $-3 < x \le 0$
(2 - x)	if $x > 0$

Find	
(i) $g(-1)$	
(ii) g(-4)	
(iii)g(2)	
(iv)g(0)	
(v) g(10)	[5 Marks]
$1 \log \theta = \sin \theta$	
(c) Show that $\frac{1+\cos\theta}{\sin\theta} = \frac{\sin\theta}{1-\cos\theta}$	[5 Marks]
(d) Solve for n in $n_{C2} = 28$	[5 Marks]

QUESTION FIVE

- (a) Peter has five friends. In how many ways can he invite at least 3 of his friends to his birthday party? [4 Marks]
- (b) How many terms at least of the AP 1, 4, 7, 10... Are needed to give a sum greater than 590 [3 Marks] from the first term of the AP.

(c) Solve $6 \sin\theta + \frac{1}{\sin\theta} = 5$	[5 Marks]
(d) Given $f(x) = 2x^2 + 1$ g(x) = x + 3, find	
(i) fog (x) (ii) fof (x) (iii)gog (x)	[6 Marks]