## **MATH 0012**

CHUKA



UNIVERSITY

## UNIVERSITY EXAMINATIONS

## EXAMINATION FOR THE AWARD OF CERTIFICATE IN BRIDGING

## MATH 0012: BASIC CALCULUS

STREAMS: CERT. BRIDGING

TIME: 2 HOURS

DAY/DATE: WEDNESDAY06/12/2017

11.30 A.M. – 1.30 P.M.

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER THREE

# QUESTION ONE (30 MARKS)

| (a) | Find the equation of a line parallel to the line $y = 3x + 2$ and passing thorugh the point |           |  |  |
|-----|---------------------------------------------------------------------------------------------|-----------|--|--|
|     | (1,1).                                                                                      | [3 marks] |  |  |
| (b) | Given the function defined by $f(x) = 25 - x^2$ and $g(x) = \sqrt{x}$                       |           |  |  |
|     | Evaluate $(gof)(3)$                                                                         | [4 marks] |  |  |
| (c) | Evaluate $\frac{\lim_{x \to 2} \frac{x^2 - 4}{x - 2}}{x - 2}$                               | [2 marks] |  |  |
| (d) | Given $f(x) = 2x - 1$ and $g(x) = 3x + 2$ . Find                                            | [3 marks] |  |  |
|     | (i) $(f+g)(x)$                                                                              |           |  |  |
|     | (ii) $f(2)$                                                                                 |           |  |  |
|     | (iii) $g(-1)$                                                                               |           |  |  |
| (e) | Using the first principle of differentiation, find the derivative of the function.[5 m      |           |  |  |
|     | $y = 2x^2 - 4x + 3$                                                                         |           |  |  |
| (f) | Solve the following simultaneous equation graphically                                       | [4 marks] |  |  |
|     | 2x - y = 8                                                                                  |           |  |  |
|     | 9x + 3y = 21                                                                                |           |  |  |
| (g) | and $\frac{dy}{dx}$ using method of choice or the indicated technique in the bracket.       |           |  |  |
|     | (i) $y = \frac{x^2 + 4x}{2x - 1}$ (Quotient rule)                                           | [3 marks] |  |  |
|     | (ii) $y = (2x - 1)^7$ ( <i>chain rule</i> )                                                 | [2 marks] |  |  |

#### **MATH 0012**

| (h) | The gradient of a function $y = f(x)$ is given by $\frac{dy}{dx} = \frac{-1}{2}x + x^2$ . | If $y = 8$ and $x = 2$ . |
|-----|-------------------------------------------------------------------------------------------|--------------------------|
|     | Find $y$ in terms of $x$                                                                  | [4 marks]                |

#### **QUESTION TWO (10 MARKS)**

- (a) After t seconds a particle has travelled a distance of 5 metres where;
  - $S = -27t + 15t^2 t^3$
  - (i) At what time does the velocity become zero. [3 marks]
  - (ii) At what time does the acceleration vanished. [2 marks]
    - (iii) Calculate the velocity and acceleration at t = 2 [2 marks]

(b) Evaluate 
$$\int (x - x^2) dx$$
 [3 marks]

#### **QUESTION THREE (10 MARKS)**

(a) Evaluate 
$$\int_{-1}^{3} (x^2 - 2x^3) dx$$
 [4 marks]

(b) Evaluate 
$$\frac{\lim_{y \to 2} \frac{y^2 - 5y + 6}{y^2 - 4}}{[3 marks]}$$

(c) Find the area under a curve from x = 0 to x = 1 given by  $y = x^2 - x$  [3 marks]

### **QUESTION FOUR (10 MARKS)**

- (a) Approximate the value  $\int_{1}^{4} (\chi^2 + 6x + 1) dx$  using trapezoidal rule with 8 strips.[6 marks]
- (b) Find the gradient and y intercept of the following line 2y 3x = 5 [4 marks]

# **QUESTION FIVE (10 MARKS)**

(a) Given the function defined by 
$$f(x) = x^3$$
 and  $g(x) = x - 3$   
Find

| (i)  | fog(x) | [2 marks] |
|------|--------|-----------|
| (ii) | fof    | [2 marks] |
|      |        |           |

(iii) go3f [3 marks]

# (b) Using the above functions f(x) and g(x). Find $\frac{f(x)}{g(x)}$ [3 marks]

# **MATH 0012**

# **QUESTION SIX (10 MARKS)**

- (a) Find the equation of the tangent and normal to the graph of  $y = x^2 + 5x + 2$  at x = 1 [5 marks]
- (b) Evaluate  $\int_{1}^{4} \frac{1}{x} dx$  using Simpson's rule using 8 intervals. [5 marks]
- \_\_\_\_\_