CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF CO-OPERATIVE MANAGEMENT.

BCOM 162: BUSINESS MATHEMATICS II

STREAMS: BCOM TIME: 2 HOURS

DAY/DATE: THURSDAY 7/12/2017 8.30 A.M - 10.30 A.M.

INSTRUCTIONS:

• Answer Question ONE and any other TWO Questions

• Do not write on the question paper

QUESTION ONE

(a) Discuss the stages involved in decision making process.

[4 Marks]

(b) Solve for x_1 , x_2 and x_3 in the following simultaneous equation using matrix $4x_1+x_2-5x_3=8$

$$-2x_1+3x_2+x_3=12$$

$$3x_1-x_2+4x_3=5$$

[6 Marks]

(c) Find the derivative of the following fraction $y = \frac{20x^2 - 6x + 3}{2x^2 + x}$

[3 Marks]

(d) Given the function $y = 2x^3 - 3x^2 + 6x + 2$, find the maximum value of y.

[3 Marks]

(e) Given the fraction $P(Q) = 250Q - 3Q^2 + 0.04Q^3$

Evaluate

(i)
$$\frac{\partial^2 P}{\partial Q^2}$$

[2 Marks]

(ii) $\int p(q)\partial Q$

[2 Marks]

BCOM 162

- (f) In a certain study, it was found out that a student who stays in the library for over 2 hours has a failure rate of 1%. The one who stays in the library for less than 2 hours has a failure rate of 2.5% while the one who does not go the library at all has a failure rate of 6%. In a University, 60% of the students stay in the library for over 2 hours, 30% stay in the library for less than 2 hours and the rest never go to the library. Find the probability that the student went to the library less than 2 hours given that he or she failed. [5 Marks]
- (g) An economy has two industries P1 and P2. The industries have the following technology matrix $A = \begin{pmatrix} 0.2 & 0.4 \\ 0.4 & 0.8 \end{pmatrix}$. If the gross production matrix $x = \begin{pmatrix} 32 \\ 79 \end{pmatrix}$ find the final demand matrix $D = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$

QUESTION TWO

(a) Given that
$$C = \begin{pmatrix} -3 & 4 & 2 \\ 5 & 0 & 4 \end{pmatrix}$$
 and $D = \begin{pmatrix} -6 & 4 \\ 2 & 3 \\ 3 & 2 \end{pmatrix}$ and also T=CD
Find the inverse of T [5 Marks]

(b) A company is considering investing in one of the three investment opportunities, A, B and C under the given economic condition. The pay off matrix in (Sh) for this situation is given below

		States of nature			
Investment Opportunities	1	2	3		
A	5000	7000	3000		
В	-2000	10,000	6000		
C	4000	4,000	4000		

Determine the best investment opportunity using the following principles

(i) Maxi-min	[2 Marks]
(ii) Max-max	[2 Marks]
(iii)Mini-max	[2 Marks]
(iv)Horwicz, assume $\propto = 0.3$	[2 Marks]
(v) Laplace	[2 Marks]

(c) From past experience, a machine is known to be set up correctly in 90% of the occasions. If the machine is set up correctly, then 95% of goods parts are expected but if the machine is not set up correctly, then the probability of good parts is only 30%. On a particular day, the machine is set up and the first component produced is found to be good. What is the probability that the machine was set up correctly? [5 Marks]

BCOM 162

QUESTION THREE

(a) State and briefly explain areas of application of calculus in business.

[6 Marks]

(b) Optima products Ltd produces a product names "Vanilla", The average revenue and total cost function of the product are given be

$$AR = 250 - Q$$

$$TC = -500 + 31Q^2 + 10Q$$

Where AR = Average revenue function in Kshs. Millions

TC = Total cost function in Millions

Q = The number of units of vanilla sold.

Required:

(i) The profit function

[4 Marks]

(ii) The level of output that will maximize profit.

[4 Marks]

(iii)The maximum profit

[3 Marks]

(c) Use Cramers rule to solve for x, y and z

$$x + 2y + 3z = 3$$

$$2x + 4y + 5z = 4$$

$$3x + 5y + 6z = 8$$

[3 Marks]

QUESTION FOUR

(a) State and explain the three decision making environments.

[6 Marks]

(b) An economy produces two produces, A and B. The following table gives the supply and demand positions for the two sectors in millions of Kenya shillings.

		Consumer	Final demand	
		A	В	
Producers	A	150	100	100
	В	200	300	1500

Required

(i) Technology matrix for the two sectors.

[3 Marks]

(ii) Leontief matrix

[3 Marks]

(iii)Determine the output required to satisfy the consumers if final demand changes to 120 for A and 180 for B. [5 Marks]

(c) Evaluate the following

$$\int_{1}^{3} (10x^4 + 3x^2 + 3) \partial x$$

[3 Marks]

.....