

BCOM 162: BUSINESS MATHEMATICS II

STREAMS: BCOM
TIME: 2 HOURS
DAY/DATE: THURSDAY 7/12/2017
8.30 A.M - 10.30 A.M.

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Do not write on the question paper

QUESTION ONE

(a) Discuss the stages involved in decision making process.
(b) Solve for $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} in the following simultaneous equation using matrix
$4 x_{1}+x_{2}-5 x_{3}=8$
$-2 x_{1}+3 x_{2}+x_{3}=12$
$3 x_{1}-x_{2}+4 x_{3}=5$
[6 Marks]
(c) Find the derivative of the following fraction $y=\frac{20 x^{2}-6 x+3}{2 x^{2}+x}$
[3 Marks]
(d) Given the function $y=2 x^{3}-3 x^{2}+6 x+2$, find the maximum value of y.
(e) Given the fraction $P(Q)=250 Q-3 Q^{2}+0.04 Q^{3}$

Evaluate

(i) $\frac{\partial^{2} P}{\partial Q^{2}}$
[2 Marks]
(ii) $\int p(q) \partial Q$

BCOM 162

(f) In a certain study, it was found out that a student who stays in the library for over 2 hours has a failure rate of 1%. The one who stays in the library for less than 2 hours has a failure rate of 2.5% while the one who does not go the library at all has a failure rate of 6%. In a University, 60% of the students stay in the library for over 2 hours, 30% stay in the library for less than 2 hours and the rest never go to the library. Find the probability that the student went to the library less than 2 hours given that he or she failed.
[5 Marks]
(g) An economy has two industries P1 and P2. The industries have the following technology matrix $\mathrm{A}=\begin{array}{ll}0.2 & 0.4 \\ 0.4 & 0.8\end{array} . \quad$ If the gross production matrix $\mathrm{x}=\binom{32}{79^{\prime}}$ find the final demand matrix $\mathrm{D}=\binom{d_{1}}{d_{2}}$
[5 Marks]

QUESTION TWO

(a) Given that $C=\left(\begin{array}{ccc}-3 & 4 & 2 \\ 5 & 0 & 4\end{array}\right)$ and $D=\left(\begin{array}{cc}-6 & 4 \\ 2 & 3 \\ 3 & 2\end{array}\right)$ and also $\mathrm{T}=\mathrm{CD}$

Find the inverse of T
[5 Marks]
(b) A company is considering investing in one of the three investment opportunities, A, B and C under the given economic condition. The pay off matrix in (Sh) for this situation is given below

Investment Opportunities
A
B

C	4000	4,00

States of nature		
1	2	3
5000	7000	3000
-2000	10,000	6000
4000	4,000	4000

Determine the best investment opportunity using the following principles
(i) Maxi-min
[2 Marks]
(ii) Max-max
(iii)Mini-max
[2 Marks]
(iv)Horwicz, assume $\propto=0.3$
[2 Marks]
(v) Laplace
(c) From past experience, a machine is known to be set up correctly in 90% of the occasions. If the machine is set up correctly, then 95% of goods parts are expected but if the machine is not set up correctly, then the probability of good parts is only 30%. On a particular day, the machine is set up and the first component produced is found to be good. What is the probability that the machine was set up correctly?
[5 Marks]

QUESTION THREE

(a) State and briefly explain areas of application of calculus in business.
(b) Optima products Ltd produces a product names "Vanilla", The average revenue and total cost function of the product are given be

$$
\begin{aligned}
& A R=250-Q \\
& T C=-500+31 Q^{2}+10 Q
\end{aligned}
$$

Where AR = Average revenue function in Kshs. Millions
TC $=$ Total cost function in Millions
$\mathrm{Q}=$ The number of units of vanilla sold.

Required:

(i) The profit function
[4 Marks]
(ii) The level of output that will maximize profit.
(iii)The maximum profit
(c) Use Cramers rule to solve for x, y and z

$$
\begin{align*}
& x+2 y+3 z=3 \\
& 2 x+4 y+5 z=4 \\
& 3 x+5 y+6 z=8 \tag{3Marks}
\end{align*}
$$

QUESTION FOUR

(a) State and explain the three decision making environments.
(b) An economy produces two produces, A and B. The following table gives the supply and demand positions for the two sectors in millions of Kenya shillings.

	Consumers			
Producers	A	B		
	A	150	100	100
	B	200	300	1500

Required

(i) Technology matrix for the two sectors.
[3 Marks]
(ii) Leontief matrix
[3 Marks]
(iii)Determine the output required to satisfy the consumers if final demand changes to 120 for A and 180 for B.
[5 Marks]
(c) Evaluate the following

$$
\begin{equation*}
\int_{1}^{3}\left(10 x^{4}+3 x^{2}+3\right) d x \tag{3Marks}
\end{equation*}
$$

