CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE (PHYSICS)

PHYS 811: MATHEMATICAL PHYSICS

STREAMS: MSC. PSYC
TIME: 3 HOURS
DAY/DATE: MONDAY 09/12/2019
2.30 P.M. - 5.30 P.M.

INSTRUCTIONS: Answer question ONE and any other TWO questions

QUESTION ONE (25 MARKS)

a) Find out the differentiability of the function $f(z)=z^{*}$
b) Show that the following four matrices form a group under matrix multiplication
[5 marks]
$E=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right], C=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
c) Use Cauchy-Riemann conditions to show that $f(z)=z^{2}$ is analytic in the entire z-plane
[4 marks]
d) Evaluate the integral $f(x)=\int_{0}^{\infty} \frac{\sin x t}{t} d t$ using the Laplace transform. [6 marks]
e) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $y=e^{-x^{2}}$ at the point $x=0.05$ from the data of the table given below
[6 marks]

x	$y=e^{-x^{2}}$	Δ	Δ^{2}	Δ^{3}	Δ^{4}
0	1.00000				
0.05	0.99750	-250			
0.10	0.99005	-745	-495		
0.15	0.97775	-1230	-485	+10	
0.20	0.96079	-1696	-466	+19	+9
0.25	0.93941	-2138	-442	+24	+5
0.30	0.91393	-2548	-410	+32	+8

QUESTION TWO (15 MARKS)

$\begin{array}{ll}\text { a) State and prove the residue theorem } & \text { [5 marks] } \\ \text { b) Evaluate the integral } \int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta \text { using the residual theorem } & {[10 \mathrm{marks}]}\end{array}$

QUESTION THREE (15 MARKS)

a) Construct the Green's function for the problem stated mathematically as $\frac{d^{2} y}{d x^{2}}-\omega^{2} y=f(x)$ where $\mathrm{f}(\mathrm{x})$ is a known function and y satisfies the boundary conditions $y(0)=0$ and $y(L)=0$
b) Define the shifting property of the Laplace transform and use it to find the Laplace transform of $e^{-x} \cos x$
c) Prove the following recurrence relation for Bessel function $J_{n}^{\prime}(x)=-\frac{n}{x} J_{n}(x)+J_{n-1}(x)$

Where the prime denotes the differentiation with respect to x
Given: $J_{n}(x)=\sum_{r=0}^{\infty}(-1)^{r}\left(\frac{x}{2}\right)^{n+2 r} \frac{1}{r!\sqrt{(n+r+1)}}$

QUESTION FOUR (15 MARKS)

a) Solve wave equation

$$
\frac{\partial^{2} u(x, t)}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} u(x, t)}{\partial t^{2}}
$$

Using the Fourier transform with the initial conditions given as $u(x, 0)=f(x)$, and

$$
\frac{\partial u(x, 0)}{\partial t}=0
$$

b) Define isomorphism and show that the group $(i,-1,-i, 1)$ is isomorphic to the cyclic group $\left(A, A^{2}, A^{3}, A^{4}=E\right)$
c) Using the table given below, evaluate the integral

$$
\int_{0}^{1.0} \frac{x^{3}}{e^{x}-1} d x
$$

By using Simpson's one- third rule

x	$f(x)=\frac{x^{3}}{e^{x}-1} d x$
0	0
0.25	0.055013
0.75	0.192687
1.00	0.377686
	0.581977

QUESTION FIVE (15 MARKS)

a) A sphere of radius a is centred at O. It is cut into two equal halves by the $x-y$ plane. The upper part is maintained at potential $+\mathrm{V}_{\mathrm{o}}$ and the lower part at potential $-\mathrm{V}_{\mathrm{o}}$. Calculate the potential at a point inside the sphere in the following steps:
i) Write the Laplace's equation satisfied by the potential in spherical polar coordinates and make use of the method of separation of variables to separate it into the $\varphi-, \theta-$, and $r-$ equations.
ii) Solve the $\varphi-, \theta-$, and $r-$ equations.
iii) Make use of the boundary conditions to find the potential.
[6 marks]

