CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTERS OF SCIENCE IN ECONOMICS

MSEC 831: MATHEMATICAL METHODS FOR ECONOMISTS
STREAMS: MSC (ECON)
TIME: 3 HOURS
DAY/DATE: TUESDAY 03/12/2019
2.30 PM - 5.30 PM

INSTRUCTIONS:
ANSWER QUESTION ONE AND ANY OTHER THREE QUESTIONS

QUESTION ONE

(a) A discriminating monopolist producing a single product faced with the following two demand functions from each of the two markets

$$
\begin{aligned}
& P_{1}=25-2 Q_{1} \\
& P_{2}=40-3 / 2 Q_{2}
\end{aligned}
$$

The monopolist has the following total cost function
$C=60+40$
$Q=Q_{1}+Q_{2}$
(i) Find the profit maximizing levels of outputs and prices. [6 marks]
(ii) In the absence of price discrimination, what would be profit maximizing levels of output and prices?
(b) The Leontief inverse for a three-sector economy and the final demand are given below.

$$
[1-A]^{-1}=\left[\begin{array}{lll}
2.4 & 0.6 & 0.3 \\
2.0 & 3.5 & 2.0 \\
2.5 & 4.0 & 4.5
\end{array}\right]
$$

$D=\left[\begin{array}{l}D_{1} \\ D_{2} \\ D_{3}\end{array}\right]=\left[\begin{array}{c}100 \\ 200 \\ 50\end{array}\right]$
Compute the sectorial total outputs that will enable the economy to realize the planned final demand.
[6 marks]
(c) Find the derivatives of the following functions
(i) $\quad y=\frac{4 x^{2}+3 x}{\left(1+x^{2}-3 x^{4}+2 x\right)\left(x^{2}-4 x^{3}\right)}$
[3 marks]
(ii) $y=3^{5 x^{2}-2 x^{3}}$
[2 marks]

QUESTION TWO

(a) Given $Q=100 K^{0.5} L^{0.5} \mathrm{~W}=\mathrm{ksh} .30$ and $\mathrm{r}=\mathrm{ksh}$. 40. Find the quantity of labour and capital that the firm should use inoder to minimize the cost of producing 1444 units of output. What's the minimum cost?
[6 marks]
(b) Solve the following systems of equation by matrix inverse and Crammer's rule.
[6 marks]
$x_{1}+3 x_{2}+3 x_{3}=4$
$x_{1}+4 x_{2}+3 x_{3}=6$
$x_{1}+3 x_{2}+4 x_{3}=2$
(c) You are given the following quadratic form where
$Q=f(x, y)=-5 x^{2}+6 x y-2 y^{2}$
(i) Present the quadratic form in matrix form
(ii) Find the $2^{\text {nd }}$ order partial derivatives of Q and present them in matrix format form with the elements of matrix presented in an ordered manner.
(d) Find the derivative of $y=a^{x}$
[2 marks]

QUESTION THREE

(a) Find the stationary point for the following function and determine whether it present a maximum, minimum or saddle point.

$$
\begin{equation*}
X=f(x, y)=3 x^{2}+x y-2 y^{2}-4 x-9 y+10 \tag{6marks}
\end{equation*}
$$

(b) For each of the following functions, find the corresponding Hessian matrices and Hessian determinant.

$$
\begin{aligned}
& Z=f(x, y)=3 x^{2}+4 x y-7 y^{2} \\
& Z=f\left(x_{1}, x_{2}\right)=18-3 x_{1} x_{2}-2 x_{1}^{2}+12 X_{2}^{2}
\end{aligned}
$$

(c) Consider the following quadratic form
$Q=4 X_{1}^{2}+6 x_{1} x_{2}-3 X_{2}^{2}$
$Q=2 X_{1}^{2}+8 x_{1} x_{2}+5 X_{2}^{2}$
(i) Present each quadratic form Q in matrix format.
[4 marks]
(ii) Find the derivating of Q with respect to X_{1} and X_{2} and present answer in matrix form.
[4 marks]

QUESTION FOUR

(a) A firm wishing to maximize its output subject to budget has the following production function and cost function
$Q=40 K^{0.25} K^{0.75}$
Cost constraint $=4 K+81=40$
(i) Set up constrained maximization problem. [1 mark]
(ii) Construct the corresponding Langragian function
(iii) Find critical values of L K and λ
(iv) Confirm whether the critical values present a maximum.
(b) Find the Jacobian matrices and Jacobian determinant of the following systems of equation

$$
\begin{aligned}
& y_{1}+5 x_{1}+3 x_{2} \\
& y_{2}+8 x_{1}+7 x_{2}
\end{aligned}
$$

QUESTION FIVE

(a) Given the utility function $\mathrm{U}=A X^{a} y^{b}$ subject to budget constraint $P_{x} X+P_{y} Y=B$. Prove that at the point of constrained utility maximization the ratio of prices P_{x} / P_{y} must equal to ratio of marginal utilities $M U_{x} / M U_{y}$
[10 marks]
(b) Determine whether the following system of two functions are dependent or independent.
[4 marks]

$$
\begin{aligned}
& Z_{1}=f^{\prime}(x, y)=4 x^{2}-2 x y+6 y^{2} \\
& Z_{2}=f^{2}(x, y)=6 x^{2}-3 x y+9 y^{2}
\end{aligned}
$$

(c) The national income model for an open economy is given as;

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{C}+\mathrm{I}+\mathrm{G}+\mathrm{X}-\mathrm{M} \\
& \mathrm{C}=\mathrm{a}+\mathrm{by}^{\mathrm{d}} \\
& \mathrm{I}=\mathrm{I}+\mathrm{I}_{0}+\mathrm{I}_{1} \mathrm{Y}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{M}=\mathrm{M}_{0}+\mathrm{M}_{1} \mathrm{Y} \\
& \mathrm{G}=G_{0}, \mathrm{X}=X_{0}
\end{aligned}
$$

(i) Present this model in matrix format
(ii) Use matrix inverse to solve for equal national income (\bar{Y}), equal consumption (\bar{C}) and import (\bar{M}),

