

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE IN ECONOMICS

MSEC 811: ADVANCED MICROECONOMICS THEORY I
STREAMS: MSC (ECON)
TIME: 3 HOURS
DAY/DATE: MONDAY 02/12/2019
2.30 P.M. - 5.30 P.M.

INSTRUCTIONS: Answer ONE question and other THREE questions
QUESTION ONE (COMPULSORY)
(a) Explain the properties of cost function
(b) Assume an indirect utility function $V\left(P_{i}, M\right)$. Derive the Roy's identify [5 marks]
(c) The following is production function for a given firm
$Y=\left[\operatorname{Min}\left(\frac{x_{1}}{a_{1}}, \frac{x_{2}}{a_{2}}\right)\right]^{0.75}$

Required

(i) Derive the firm's conditional input demand function
(ii) Derive the firms cost function
(iii) Calculate the firms profit function
(iv) Derive the firms unconditional demand function
(v) Derive the firms output supply function
(d) Consider the effect of price control on a monopoly requiring the price to be not higher than $P_{\text {max }}$.
$\operatorname{Max} \Pi=P Q-C(Q)$
S.t

$$
\begin{aligned}
& P, Q \geq 0 \\
& Q \leq f(Q) \\
& P \leq P_{\max }
\end{aligned}
$$

Required:

Analyze the profit maximizing problem, giving all relevant cases

QUESTION TWO

(a) Given a utility function
$U(x)=3 x_{1}+5 x_{2}$

Required:

(i) Calculate the Marshallian demands for this consumer
(ii) Derive the indirect utility function for this consumer
(iii) Calculate the hicksian demands for this consumer
(iv) Derive the expenditure function for this consumer

QUESTION THREE

(a) Consider a simple case of single output and single input and clearly prove the $1^{\text {st }}$ and $2^{\text {nd }}$ Hotelling's lemma.
[10 marks]
(b) Consider a consumer who consumes two commodities X_{1} and X_{2}. Suppose the expenditure function for this consumer $E(p, u)=P_{1}^{\frac{1}{2}} P_{2}^{\frac{1}{2}} U$. Assume the initial situation is such that $P_{1}=4, P_{2}=1$ and $M=200$. A subsidy program reduces price of x_{1} to $P_{1}=1$. Suppose consumer is ineligible for this program. How much will he/she pay at most as bribe to be allowed into program?
[10 marks]

QUESTION FOUR

(a) Assume the following demand expressions $X^{m}\left(P_{i}, M\right)$ and $X^{H}\left(P_{i}, U\right)$. Derive and explain the Slutsky's equation.
[10 marks]
(b) Derive the condition for both maximum and minimum given a non-positive constraint $(X<0)$
[10 marks]

QUESTION FIVE

Suppose the firm's production function is given as $Y=L^{1 / 4} K^{1 / 2}$ use the two step approach to solve the following
(i) Conditional input demand functions [5 marks]
(ii) The minimum cost [3 marks]
(iii) Output supply function

MBAC 811

(iv) Unconditional input demand functions
[4 marks]
(v) Maximum profit [5 marks]

