UNIVERSITY

MBAC 811

CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE IN ECONOMICS

MSEC 811: ADVANCED MICROECONOMICS THEORY I

STREAMS: MSC (ECON)

TIME: 3 HOURS

DAY/DATE: MONDAY 02/12/2019 2.30 P.M. – 5.30 P.M. INSTRUCTIONS: Answer ONE question and other THREE questions

QUESTION ONE (COMPULSORY)

- (a) Explain the properties of cost function [10 marks]
 (b) Assume an indirect utility function V(P_i, M). Derive the Roy's identify [5 marks]
- (c) The following is production function for a given firm

$$Y = \left[Min\left(\frac{x_1}{a_1}, \frac{x_2}{a_2}\right) \right]^{0.75}$$

Required

(i)	Derive the firm's conditional input demand function	[4 marks]
(ii)	Derive the firms cost function	[2 marks]
(iii)	Calculate the firms profit function	[2 marks]
(iv)	Derive the firms unconditional demand function	[3 marks]
(v)	Derive the firms output supply function	[2 marks]

(d) Consider the effect of price control on a monopoly requiring the price to be not higher

than P_{max} .

```
Max \Pi = PQ - C(Q)
S.t
P, Q \ge 0
Q \le f(Q)
P \le P_{max}
```

MBAC 811

Required:

Analyze the profit maximizing problem, giving an relevant cases [12 marks	Analyze the	profit maximizing	problem, giving all relevant cases	[12 marks]
---	-------------	-------------------	------------------------------------	------------

QUESTION TWO

(a) Given a utility function

 $U(x) = 3x_1 + 5x_2$

Required:

(i)	Calculate the Marshallian demands for this consumer	[6 marks]
(ii)	Derive the indirect utility function for this consumer	[4 marks]
(iii)	Calculate the hicksian demands for this consumer	[6 marks]
(iv)	Derive the expenditure function for this consumer	[4 marks]

QUESTION THREE

(a) Consider a simple case of single output and single input and clearly prove the 1st and 2nd
 Hotelling's lemma. [10 marks]

(b) Consider a consumer who consumes two commodities X_1 and X_2 . Suppose the expenditure function for this consumer $E(p, u) = P_1^{\frac{1}{2}} P_2^{\frac{1}{2}} U$. Assume the initial situation is such that $P_1 = 4$, $P_2 = 1$ and M = 200. A subsidy program reduces price of x_1 to $P_1 = 1$. Suppose consumer is ineligible for this program. How much will he/she pay at most as bribe to be allowed into program? [10 marks]

QUESTION FOUR

- (a) Assume the following demand expressions $X^m(P_i, M)$ and $X^H(P_i, U)$. Derive and explain the Slutsky's equation. [10 marks]
- (b) Derive the condition for both maximum and minimum given a non-positive constraint (X < 0) [10 marks]

QUESTION FIVE

Suppose the firm's production function is given as $Y = L^{\frac{1}{4}}K^{\frac{1}{2}}$ use the two step approach to solve the following

(i)	Conditional input demand functions	[5 marks]
(ii)	The minimum cost	[3 marks]
(iii)	Output supply function	[3 marks]

MBAC 811

(iv)	Unconditional input demand functions	[4 marks]
(v)	Maximum profit	[5 marks]