CHUKA

EXAMINATION FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN APPLIED MATHEMATICS

MATH 923: FUNCTIONAL DIFFERENTIAL EQUATIONS

STREAMS: PhD (APPLIED MATHS)
TIME: 3 HOURS
DAY/DATE: WEDNESDAY 14/08/2019
8.30 A.M - 11.30 P.M.

INSTRUCTIONS:

- Answer ALL Questions.

QUESTION ONE

(a) Solve the delay differential equation $\frac{d x}{d t}=-x(t-1)$ given the constant initial data $X(t)=$ 1 , for $t \in[-1,0]$ in the interval
(i) $[0,1]$
[2 Marks]
(ii) $[1,2]$
[2 Marks]
(iii) $[2,3]$
[2 Marks]
(b) Analyze the asymptotic behavior of the Neutral differential equation using the spectral approach. $\left\{\begin{array}{c}x^{11}(t)+x^{11}(t-1)=x(t)+x(t-1) \\ X(t)=Q(t),-1 \leq t \leq 0\end{array}\right.$

QUESTION TWO

(a) Show that the differential equation $\frac{d y}{d t}=-1 / 2 y^{-1}$, does not have a solution satisfying $y(0)=$ 0 , for $t>0$.
[3 Marks]
(b) Show that the differential equation $x^{1}=x^{2 / 3}$, has infinitely many solutions satisfying $x(0)=$ 0 , on every interval $[0, b]$.
(c) Determine whether the function $X(x, t)=\frac{x^{2}+1}{x} \cdot t$ satisfying a Lipchitz condition in the domains
(i) $R_{1}=[1,2] x[0,1]$
(ii) $R_{2}=[1,2] x[0,+\infty]$
[2 Marks]
(iii) $R_{3}=[1,+\infty] x[0, T]$
[2 Marks]
(iv) $R_{4}=(0,1) x[0,1]$
[2 Marks]
(v) $R_{5}=(1,2) x[0,1]$
[1 Mark]

QUESTION THREE

(a) Consider the system $\frac{d u}{d t}=-y(t) u+a(t) / u(t) / p+\frac{1}{(1+t)} q, \mu^{(0)=0}$

Where $y(t)=\frac{c}{1+t^{b}}, a(t)=\frac{1}{(1+t)^{m}}$,
$\mathrm{P}, \mathrm{q}, \mathrm{b}, \mathrm{c}$ and m are positive constants. Give the sufficient condition for the system to converge to zero as $t \rightarrow \infty$
[8 Marks]
(b) Consider the system
$\frac{d x}{d t}=\propto x+2 y$
$\frac{d y}{d t}=-2 x$
Where \propto is a constant. Find the critical values of \propto where the change of the qualitative nature of the phase portrait for the system occurs and classify the autonomous system.
[7 Marks]

QUESTION FOUR

(a) Find the maximal solutions for the following initial value problems
(i) $\left\{\begin{array}{c}\frac{d x}{d t}=x \\ x(0)=<\end{array}\right.$
[5 Marks]
(ii) $\left\{\begin{array}{c}\frac{d x}{d t}=\frac{1}{t^{2}} \cos \frac{1}{t} \\ X(t o)=C, \text { to } \neq 0\end{array}\right.$
[5 Marks]
(b) Verify whether the tent map $f_{2}(x)=\left\{\begin{array}{c}2 x, x \in[0,1 / 2] \\ 2(1-x), x \in(1 / 2,1)\end{array}\right.$ extended to a map
$g:[-1,1] \rightarrow[-1,1]$ defined by $g(x)=\left\{\begin{array}{c}-f_{2}(x), x \in[-1,0] \\ -f_{2}(x), x \in[0,1]\end{array}\right.$
Where the function is a le-limit set.
[5 Marks]

