EXAMINATION FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY IN APPLIED MATHEMATICS

MATH 921: NUMERICAL ANALYSIS I
STREAMS: PhD
TIME: 3 HOURS

DAY/DATE: MONDAY 12/08/2019
8.30 A.M. - 11.30 A.M.

INSTRUCTIONS:

- Answer ALL questions.

QUESTION ONE

(a) Solve the non-linear system
$3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2}=0$
$x_{1}^{2}=81\left(x_{1}+0.1\right)^{2}+\sin x_{3}+1.06=0$
$e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3}=0$

When the initial approximation
$X^{0}=\left[\begin{array}{c}0.1 \\ 0.1 \\ -0.1\end{array}\right]$ upto $x^{(1)}$
Using Newton's method
(b) Use Fibonacci algorithm to minimize

$$
f(x)=\frac{-1}{(x-1)^{2}}\left\{\log x-2\left(\frac{x-1}{x+1}\right)\right\}
$$

If it is known that the minimizer is in the range of [1.5, 4.5]. Reduce the interval to $\left(\frac{2}{21}\right)$ of the original up to 5 iterations.
(7 marks)

QUESTION TWO

(a) Minimize
$f\left(x_{1} x_{2}\right)=4\left(x_{1}-5\right)^{2}+6\left(x_{2}-6\right)^{2}$. Use the method of Welder and Mead. The initial simplex has the following three vertices
$\mathrm{A}(8,9), \mathrm{B}(10,11), \mathrm{C}(8,11)$ up to 4 iterations

QUESTION THREE

(a) Obtain the solution of the following by Crouts method

$$
\begin{aligned}
& 4 x+y-t=13 \\
& 3 x+5 y+2 t=21 \\
& 2 x+y+6 t=14
\end{aligned}
$$

(b) Determine the root of
$x^{4}+x^{3}-x+5=0$ which has between 2 and 3, correct to 3 dp . By Newton-Ralpson's method.
(5 marks)
(c) Compute the real root of $x \log x-1.2=0$ by NR methods given that the real root has between 2 and 3 .
(5 marks)

QUESTION FOUR

(a) Find the maximum of

$$
\begin{align*}
& A=(h+b+10)\left(\frac{2,272,000}{h b}+2 b+5\right) \text { by Newton's method given that } \\
& a=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], G=\left[\begin{array}{l}
49.92 \\
375.1
\end{array}\right] \\
& J=\left[\begin{array}{ll}
4.998, & 2.227 \\
2.227, & 8.998
\end{array}\right] \tag{8marks}
\end{align*}
$$

(b) Find the minimum of
$f(x, y)=x^{4}+y^{4}+(2 x+y-5)^{2}$ by DFP method starting at $(0,0)$ using 3 iterations.
(7 marks)

