MATH 832

CHUKA

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 832: METHODS OF APPLIED MATHS II

STREAMS: MSC

.....

TIME: 3 HOURS

DAY/DATE: MONDAY 09/12/2019 2.30 P.M. – 5.30 P.M. – 100 P.M. – 100

- Answer any FOUR questions
- All workings must be shown clearly
- Adhere to the instructions on the answer booklet

QUESTION ONE

(a) Prove the following recurrence relations of Bessel's functions

(i)
$$J'_n(x) + \frac{n}{x} J_n(x) = J_{n-1}(x)$$
 [2 marks]

(ii)
$$J'_n(x) - \frac{n}{x} J_n(x) = -J_{n+1}(x)$$
 [2 marks]

(b) Show that

$$J_4'(x) = \left(\frac{48}{x^3} - \frac{8}{x}\right) J_1(x) + \left(1 - \frac{24}{x^2}\right) J_0^{(x)}$$

- (c) Express $4x^3 + 6x^2 + 7x + 2$, in terms of Legendre polynomials [5 marks]
- (d) Find the general solution of the Bessel's equation

$$x^{2}y'' + xy' + \left(x^{2} - \frac{1}{4}\right)y = 0$$
 [3 marks]

UNIVERSITY

MATH 832

QUESTION TWO

(a) Write the general function of the associated Legendre equation and find the regular singular points

Hence solve

$$(1-x^2)y'' - 2xy' + \left(12 - \frac{4}{1-x^2}\right)y = 0$$
 about the point $x = 1$ [5 marks]

(b) Obtain the recurrence relation for the hypergeometric function

$$x(1-x)y'' + [C - (a+b+1)x]y' - abt = 0$$
 about the point $x = 0$ [4 marks]

(c) Show that the n^{th} spherical Bessel function is given by

$$f_n(x) = (-1)^n x^n \left(\frac{1}{x} \frac{d}{dx}\right)^n f_o(x)$$

Where $f_n(x)$ denotes either
 $J_n(x)$ or $N_n(x)$
Hence evaluate $J_2(x)$ and $N_2(x)$ [6 marks]

QUESTION THREE

$$y(x) = x + \lambda \int_0^1 (x\mathbf{z} + x^2\mathbf{z}^2) y(\mathbf{z})dt$$
 [5 marks]

(b) Find the eigenvalues and corresponding Eigen functions of the homogeneous Fredholm equation

$$y(x) = \lambda \int_0^{\pi} \sin(x+z) \ y(z) dz$$
 [5 marks]

- (c) Solve the following integral equations and discuss the uniqueness of the solutions
 - (i) $F + \lambda ky = 0$ [1 mark]

(ii)
$$y = f + \lambda ky$$
 [1 mark]

(d) Test for an extremum the functional

$$I[y(x)] = \int_0^1 (xy + y^2 - 2y^2) dx \quad y(0) = 1, \ y(1) = 2$$
 [3 marks]

QUESTION FOUR

(a) Find the Fourier transform of the function

$$g(x) = \begin{cases} 1, & /x \le a \\ 0, & /x > a \end{cases}$$

Hence find an explicit expression for the solution of the integral equation

MATH 832

$$y(x) = f(x) + x \int_{-\infty}^{\infty} \frac{\sin(x-z)}{x-z} y(z) dz$$
 [5 marks]

(b) Solve the integral equation y(x) = x + λ ∫₀¹ xz²y(z)dz by the Neumann series method. Assume y(x) ≂ y₀(x) = x [5 marks]
(c) Use the Fredholm theory to solve the integral equation y(x) = x + λ ∫₀¹ xy (z)dz [5 marks]

QUESTION FIVE

- (a) Find the shape of the curve of the given perimeter enclosing maximum area [7 marks]
- (b) Obtain the solid of maximum volume formed by the revolution of a given surface

[8 marks]
