CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 831: METHODS OF APPLIED MATHS I

STREAMS: BED (ARTS)
TIME: 3 HOURS
DAY/DATE: FRIDAY 09/08/2019
8.30 AM - 11.30 AM

INSTRUCTIONS:

- Answer any Four Questions
- Adhere to the instructions on the answer booklet

QUESTION ONE

(a) Find the regular singular points of the differential equation

$$
x^{2}(x-2)^{2} y^{\prime \prime}+2(x-2) y^{\prime}+(x+3) y=0
$$

(b) Solve in series
(i) $y^{\prime \prime}+y=0$ [3 marks]
(ii) $\quad x(x-1) y^{\prime \prime}+(3 x-1) y^{\prime}+y-0$ about the point $x=0$

QUESTION TWO

(a) Given the function $x_{n}=3 n^{2}-7 n+8$, show that as $n \rightarrow \infty$,
(i) $\quad x_{n}=0\left(n^{3}\right)$
[2 marks]
(ii) $\quad x_{n}=\theta\left(n^{2}\right)$
(iii) $x_{n} \sim 3 n^{2}$
(b) Solve the perturbation problem $P(\varepsilon): f(x, \varepsilon)=x^{2}+\varepsilon x-1=0$ for $0<\varepsilon \ll 1$ by binomial theorem.
[5 marks]
(c) Prove that $\sum_{i l m}=2 \delta i j$ where ε is the alternate tensor δ is the Kronecker tensor.
[4 marks]

Question Three

(a) Determine the poles and the residue at each pole of the function

$$
\begin{equation*}
f(t)=\frac{z^{2}}{(z-1)^{2}(z+2)} \tag{5marks}
\end{equation*}
$$

(b) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$ by contour integration in the complex plane. [8 marks]
(c) Given that $f(t)=5 t^{2}=5 t^{2}+t+3$

Show that as $t \rightarrow \infty$
(i) $\quad f(t)=0\left(t^{3}\right)$
[1 mark]
(ii) $\quad f(t) \sim 5 t^{2}$

QUESTION FOUR

(a) Evaluate by the method of complex variables the integral

$$
\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

(b) Expand $f(t)=\frac{1}{(t-1)(t-2)}$ for $1<|2|<2$

QUESTION FIVE

(a) Given the differential equation
$x y^{\prime \prime}+y^{\prime}+x^{2} y=0$, obtain
(i) Recurrence relation [3 marks]
(ii) Indicial equation about $x=0$
[3 marks]
(b) Find the power series solution of $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$ about $x=0$
(c) Prove that $\sum_{i j k} \sum_{i j k}=6$

Where $\varepsilon \rightarrow$ alternate tensor
$\delta \rightarrow$ Kronecker tensor

