CHUKA



UNIVERSITY

# UNIVERSITY EXAMINATIONS

## **EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS**

### MATH 831: METHODS OF APPLIED MATHS I

| STREAMS: BED (ARTS)<br>DAY/DATE: FRIDAY 09/08/2019 |                                                                          |                                                                         | TIME: 3 HOURS                       |  |
|----------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|--|
|                                                    |                                                                          |                                                                         | 8.30 AM - 11.30 AM                  |  |
| INST                                               | RUCT                                                                     | IONS:                                                                   |                                     |  |
| •                                                  | Answ<br>Adhe                                                             | ver any Four Questions<br>are to the instructions on the answer booklet |                                     |  |
| QUE                                                | STION                                                                    | ONE                                                                     |                                     |  |
| (a)                                                | Find                                                                     | the regular singular points of the differential equation                |                                     |  |
|                                                    | $x^2(x$                                                                  | $(-2)^{2}y'' + 2(x-2)y' + (x+3)y = 0$                                   | [6 marks]                           |  |
| (b)                                                | Solve in series                                                          |                                                                         |                                     |  |
|                                                    | (i)                                                                      | $y^{\prime\prime} + y = 0$                                              | [3 marks]                           |  |
|                                                    | (ii)                                                                     | x(x-1)y'' + (3x-1)y' + y - 0 about the point $x = 0$                    | [5 marks]                           |  |
| QUE                                                | STION                                                                    | TWO                                                                     |                                     |  |
| (a)                                                | Given the function $x_n = 3n^2 - 7n + 8$ , show that as $n \to \infty$ , |                                                                         |                                     |  |
|                                                    | (i)<br>(ii)<br>(iii)                                                     | $x_n = 0(n^3)$<br>$x_n = \theta(n^2)$<br>$x_n \sim 3n^2$                | [2 marks]<br>[2 marks]<br>[2 marks] |  |

(b) Solve the perturbation problem  $P(\varepsilon)$ :  $f(x, \varepsilon) = x^2 + \varepsilon x - 1 = 0$  for  $0 < \varepsilon \ll 1$  by binomial theorem. [5 marks]

#### MATH 831

(c) Prove that  $\sum_{ilm} = 2\delta ij$  where  $\varepsilon$  is the alternate tensor  $\delta$  is the Kronecker tensor. [4 marks]

## **Question Three**

(a) Determine the poles and the residue at each pole of the function

$$f(t) = \frac{z^2}{(z-1)^2(z+2)}$$
 [5 marks]

(b) Evaluate  $\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$  by contour integration in the complex plane. [8 marks]

(c) Given that 
$$f(t) = 5t^2 = 5t^2 + t + 3$$

Show that as  $t \to \infty$ 

(i) 
$$f(t) = 0(t^3)$$
 [1 mark]

(ii) 
$$f(t) \sim 5t^2$$
 [1 mark]

### **QUESTION FOUR**

(a) Evaluate by the method of complex variables the integral

$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$$
 [4 marks]

(b) Expand 
$$f(t) = \frac{1}{(t-1)(t-2)}$$
 for  $1 < |2| < 2$  [7 marks]

### **QUESTION FIVE**

(a) Given the differential equation

$$xy'' + y' + x^2y = 0, \text{ obtain}$$
(i) Recurrence relation [3 marks]

(ii) Indicial equation about x = 0 [3 marks]

(b) Find the power series solution of  $(1 - x^2)y'' - 2xy' + 2y = 0$  about x = 0[7 marks]

(c) Prove that  $\sum_{ijk} \sum_{ijk} = 6$  [2 marks] Where  $\varepsilon \rightarrow$  alternate tensor  $\delta \rightarrow$  Kronecker tensor