CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN MATHEMATICS

MATH 826: NUMERICAL ANALYSIS II
STREAMS: MSC (APP MATH)
TIME: 3 HOURS
DAY/DATE: TUESDAY 10/12/2019
2.30 PM - 5.30 PM

INSTRUCTIONS:

ANSWER ANY THREE QUESTIONS

QUESTION ONE (20 MARKS)

(a) Consider, the initial value problem $y^{\prime}=3 x^{2} y, y=(0)=1$
(i) Find the exact solution of y when $x=0.8$ [3 marks]
(ii) Solve using Euler's standard method with $h=0.25$
(b) Write down the Runge-Kutta methods for solving ODE of the form

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) ; y(0)=y_{0} \tag{6marks}
\end{equation*}
$$

(i) Order 2
(ii) Order 3
(iii) Order 4

QUESTION TWO (20 MARKS)
(a) Use Picards methods up to the second iteration corresponding to $\mathrm{x}=0.2$ for the particular solution of $\frac{d y}{d x}=x+z, \frac{d z}{d x}=x-y^{2}$ given that when $x=0, y=2$ and $z=1$
[11 marks]
(b) Consider IVP $\frac{d y}{d x}=x^{2}+y ; \quad y(0)=1$

Taking $h=0.05$ approximate $y(0.1)$ using Euler's modified method. [9 marks]

QUESTION THREE (20 MARKS)

(a) Consider the differential equation

$$
\frac{d 2 y}{d t^{2}}+\frac{d y}{d t}+y=1 ; \quad y(0)=y^{\prime}(0)=0
$$

(i) Use RK4 method to solve the IVP with $\mathrm{h}=0.2$ and $0 \leq t \leq 0.2$
(ii) Approximate $y(0.2)$ and $z(0,2)$
[13 marks]
(b) Apply Picards method up to the third iteration to find the approximate solution to the D. E
[7 marks]
$\frac{d y}{d x}=x+y^{2} ; y(0)=0$

QUESTION FOUR (20 MARKS)

(a) Use Runge-Kutta method for order 4 with $h=0.5$ for $0 \leq n \leq 1.5$ to solve IVP to 4 d.p
$\frac{d y}{d t}=y-t^{2}+1 ; y(0)=0.5$
(b) Use Taylors series to solve the IVP and approximate $y(1.3)$ to $4 \mathrm{~d} . \mathrm{p} \quad$ [8 marks] $y^{\prime}=x+y \quad y(2)=0$

