CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 825: NUMERICAL ANALYSIS I

STREAMS: MSC (APPLIED MATHEMATICS)
TIME: 3 HOURS
DAY/DATE: FRIDAY 09/08/2019
2.30 PM - 5.30 PM

INSTRUCTIONS:

- Answer any Three Questions
- You may use advanced calculators

QUESTION ONE (20 MARKS)

(a) Use the method of bilinear approximation to approximate $f(1,0.25)$ given that $f(0.0)=1, f(0,1)=2, f(1,0)=3$ and $f(1,1)=5 \quad$ [4 marks]
(b) (i) State two assumptions made in using the Gauss Jacob method to solve systems of linear equations.
(ii) Write the computational difference between Gauss Jacob and Gauss Siedel methods and state the significance of the difference.
(iii) Solve the system of linear equations using the Gauss Jacob's method with 5 iteration. Give your answer to 2 s.f
[11 marks]

$$
\begin{aligned}
& x_{1}+x_{2}+4 x_{3}=9 \text { with } x^{\circ}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& 8 x_{1}-3 x_{2}+2 x_{3}=20 \\
& 4 x_{1}+11 x_{2}-x_{3}=3
\end{aligned}
$$

QUESTION TWO (20 MARKS)

(a) Consider the data in the table

x	0	6	20	45
y	30	48	88	238

Find:
(i) The Newton's divided difference interpolating polynomial. [4 marks]
(ii) The value of y at $x=15$
[2 marks]
(b) The data in the table represents time (t) and the corresponding velocity (v) of a particle moving with non-uniform velocity

t	0.0	1.0	1.5	2.0
V	2.5	3.8	4.6	5.3

Use Lagrange's interpolation to determine the time when the velocity of the particle is 2.75 .
(c) Find the eigenvalues and eigenvectors of the matrix A using the power method with

$$
x^{\circ}=[1,1,1]^{T}
$$

[7 marks]
$A=\left[\begin{array}{lll}6 & 3 & 1 \\ 3 & 2 & 0 \\ 1 & 4 & 5\end{array}\right]$

QUESTION THREEE (20 MARKS)

(a) Use the weighted least square method to find a polynomial of degree 2 that fits the data below given that the weights on $(1.1,1.96),(1.5,2.45)$ and $(2.1,3.18)$ are $0.4,1.2$ and 0.6 respectively.
[5 marks]

x_{i}	1.0	1.1	1.3	1.5	1.9	2.1
y_{i}	1.84	1.96	2.21	2.45	2.94	3.18

(b) (i) Define the Chebyshev polynomial
[2 marks]
(ii) Deduce the recurrence relation for the Chebyshev polynomial and use it to show that $T_{3}(x)=4 x^{3}-3 x$
(iii) Express $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$ in terms of Chebyshev polynomials [6 marks]

QUESTION FOUR (20 MARKS)

(a) Let $f(2,2)=4, f(3,2)=20$ and $f(2,3)=15$ use triangular interpolation to approximate $f(2.5,2.75)$
(b) Consider the function $f(x)=e^{x}$ at $x=0.1, x=0.6, x=1.0$ and $x=2.1$
(i) Use Newton's interpolating polynomials to estimate to 4.p. $f(0.12$ and $f(2.0)$
[7 marks]
(iii) Use stirlings formula to evaluate $\mathrm{f}(1.3)$ and find the percentage error in the approximation.
(c) Find the dominant eigenvalue and the corresponding eigenvector for matrix A to 3.s.f with $x^{0}=[1,1,1]$ after 5 iterations $A=\left(\begin{array}{ccc}0 & 11 & -5 \\ -2 & 17 & -7 \\ -4 & 26 & -10\end{array}\right)$

QUESTION FIVE (20 MARKS)

(a) Find the interpolating polynomial passing through the following points $(1,-6),(2,2)$, $(4,12)$ and $(3,-10)$ using
(i) Lagranges
(ii) Vandermonde
(b) (i) Explain the meaning of inverse interpolation
(ii) Let $y=x^{3}-2 x^{2}+0.5$. Find one root of the equation that lies between 0.5 and 0.75
[6 marks]
(c) Use Hermites interpolation based on divided differences to approximate $f(0.25)$ for the data

x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$
0.1	-0.621	3.585
0.2	-0.284	3.140
0.3	+0.007	2.667
0.4	+0.284	2.165

