MATH 823

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 823: PARTIAL DIFFERENTIAL EQUATIONS I

STREAMS: M.Sc (APPLIED MATHS)

TIME: 3 HOURS

8.30 A.M - 11.30 A.M.

DAY/DATE: THURSDAY 8/08/2019

INSTRUCTIONS

- Answer any FOUR Questions
- Do not write anything on the question paper

QUESTION ONE

(a) Given the pde $A(xy)U_{xx} + 2B(x_1y)U_{xy} + C(x_1y)U_{yy} = 0$, show that the characteristics differential equation is given by $C - 2B\frac{dy}{dx} + A\left(\frac{dy}{dx}\right)^2 = 0$ [6 Marks]

(b) Consider the pde $U_{xx} + 4U_{xy} + 5U_{yy} = 0$ [1 Mark](i) Classify the pde[1 Mark](ii) Find the characteristics[3 Marks](iii) Solve pde[5 Marks]

QUESTION TWO

Solve the following pde's by the operator method.

(i) $U_{xxx} - 2U_{xxy} = 2e^{2x} + 3x^2y$	[8 Marks]
--	-----------

(ii) $U_{xx} + U_{xy} - 6U_{yy} = y \cos x$ [7 Marks]

QUESTION THREE

- (a) Given the pde $U_{xx} = U_{t,}U(x,0) = x^2(25 x^2)$. Solve the pde by the method of separation of variables. [6 Marks]
- (b) A string is stretched and fastened to two point < apart. Motion is started by displacing the spring from which it is released at a time t = 0. Find the displacement at any point at a

MATH 823

distance x from one end at time t, given that the equation of vibration of the string is $U_{tt} = c^2 U_{xx}$ under the following conditions; [9 Marks]

(i) U(0,t) = 0(ii) U(0,x) = 0(iii) (U(l,t) = 0,(iv) $U(x,0) = 10 \sin \frac{\pi x}{\tau}$

QUESTION FOUR

- (a) Express the function $f(x) = \begin{cases} 1, when |x| \le 1\\ 0, when |x| > 1\\ 0 \end{cases}$ as a Fourier Integral, hence evaluate $\int_0^\infty \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$ [7 Marks]
- (b) Solve the differential equation $\frac{dx}{dt} y = e^t$, $\frac{dy}{dt} + x = \sin t$ given that x(o) = 1, and y(0) = 0 by Laplace transforms. [8 Marks]

QUESTION FIVE

(a) Given the pde (1 + y)U_{xx} + 2(1 - x)U_{xy} + (1 + y)U_{yy} = U. Determine the values of x and y for which the equation is;
(i) Hyperbolic
(ii) Parabolic
(iii) Elliptic
(2 Marks]
(2 Marks]
(2 Marks]
(2 Marks]

(c) Evaluate $\int_0^\infty t e^{-3t} \sin t dt$ by Laplace transforms.	[3 Marks]
(b) Solve the pue $v_{xx} + v_{xy} = v_{yy} - v_{yy} - v_{yy} + v_{yy}$	