CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 823: PARTIAL DIFFERENTIAL EQUATIONS I

STREAMS: M.Sc (APPLIED MATHS)
TIME: 3 HOURS
DAY/DATE: THURSDAY 8/08/2019
8.30 A.M - 11.30 A.M.

INSTRUCTIONS

- Answer any FOUR Questions
- Do not write anything on the question paper

QUESTION ONE

(a) Given the pde $A(x y) U_{x x}+2 B\left(x_{1} y\right) U_{x y}+C\left(x_{1} y\right) U_{y y}=0$, show that the characteristics differential equation is given by $C-2 B \frac{d y}{d x}+A\left(\frac{d y}{d x}\right)^{2}=0$
(b) Consider the pde $U_{x x}+4 U_{x y}+5 U_{y y}=0$
(i) Classify the pde
[1 Mark]
(ii) Find the characteristics
[3 Marks]
(iii)Solve pde
[5 Marks]

QUESTION TWO

Solve the following pde's by the operator method.
(i) $U_{x x x}-2 U_{x x y}=2 e^{2 x}+3 x^{2} y$
[8 Marks]
(ii) $U_{x x}+U_{x y}-6 U_{y y}=y \cos x$
[7 Marks]

QUESTION THREE

(a) Given the pde $U_{x x}=U_{t}, U(x, 0)=x^{2}\left(25-x^{2}\right.$. Solve the pde by the method of separation of variables.
[6 Marks]
(b) A string is stretched and fastened to two point < apart. Motion is started by displacing the spring from which it is released at a time $t=0$. Find the displacement at any point at a

MATH 823

distance x from one end at time t , given that the equation of vibration of the string is $U_{t t}=$ $c^{2} U_{x x}$ under the following conditions;
[9 Marks]
(i) $U(0, t)=0$
(ii) $U(0, x)=0$
(iii) $(U(l, t)=0$,
(iv) $U(x, 0)=10 \sin \frac{\pi x}{\tau}$

QUESTION FOUR

(a) Express the function $f(x)=\left\{\begin{array}{l}1, \text { when }|x| \leq 1 \\ 0, \text { when }|x|>1\end{array}\right.$ as a Fourier Integral, hence evaluate $\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d \lambda$
[7 Marks]
(b) Solve the differential equation $\frac{d x}{d t}-y=e^{t}, \frac{d y}{d t}+x=\sin t$ given that $x(o)=1$, and $y(0)=$ 0 by Laplace transforms.

QUESTION FIVE

(a) Given the pde $(1+y) U_{x x}+2(1-x) U_{x y}+(1+y) U_{y y}=U$.

Determine the values of x and y for which the equation is;
(i) Hyperbolic
[2 Marks]
(ii) Parabolic
[2 Marks]
(iii)Elliptic
(b) Solve the pde $U_{x x}+U_{x y}-6 U_{y y}=\cos (2 x+y)$ by the D. Operator.
[6 Marks]
(c) Evaluate $\int_{0}^{\infty} t e^{-3 t} \sin t d t$ by Laplace transforms.

