CHUKA

FIRST YEAR EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE IN MATHEMATICS

MATH 822: ORDINARY DIFFERENTIAL EQUATION II

STREAMS: MSC (MATH)
TIME: 3 HOURS
DAY/DATE: WEDNESDAY 11/12/2019
2.30 P.M. - 5.30 P.M.

INSTRUCTIONS: Answer any THREE questions

QUESTION ONE (20 MARKS)

(a) (i) State the condition of exactness for a general $3{ }^{\text {rd }}$ order nonlinear differential equation
(ii) Test the differential equation for exactness and then solve it
(b) (i) Convert the second order differential equation $-y^{\prime \prime}+x^{4} y=\lambda y$ into a sturm liouville equation
(ii) Show that the boundary value problem is a sturm liouville problem
$\frac{d^{2} y}{d x^{2}}+\lambda y=0$
$y(1)=1, \quad y(\pi)=0$

QUESTION TWO (20 MARKS)

(a) Find the eigenvalue and Eigen functions of the sturm liouville problem in 1 b (ii) above.
[15 marks]
(b) Define orthonormal functions F_{1} and F_{2} on an interval (a, b) then determine the orthogoriality of two functions x^{3} and x^{4} on the interval $[-1,1]$

MATH 822

QUESTION THREE (20 MARKS)

(a) Show that the functions $f(x)=-6 x+2 f_{2}(x)=6 x^{2}-6 x+1$ and $f_{3}(x)=x-1$ are orthonormal on $[0,1]$ and obtain their orthonormal set [14 marks]
(b) Consider a system of two first order equations of the form

$$
\begin{aligned}
& \frac{d x}{d t}=f,(x, y) \\
& \frac{d x}{d t}=f_{2}(x, y)
\end{aligned}
$$

Explain in relation to the system
(i) An autonomous system [1 mark]
(ii) Phase plane [1 mark]
(iii) Trajectory or the orbit [1 mark]
(iv) Critical point [2 marks]

QUESTION FOUR (20 MARKS)

(a) Consider the system of equations
$\frac{d x}{d t}=x-y+x y$
$\frac{d y}{d t}=3 x-2 y-x y$
(i) Verity that the point $(0,0)$ is a critical point [2 marks]
(ii) Discuss the type and stability of the critical point $(0,0)$ [10 marks]
(b) (i) Explain the meaning of a regular SLP (Sturm Liouville Problem) [4 marks]
(ii) State four properties of regular sturn liouville problems [4 marks]

