

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 821: ORDINARY DIFFERENTIAL EQUATIONS I

STREAMS: M.Sc (APPLIED MATHS)
TIME: 3 HOURS
DAY/DATE: THURSDAY 8/08/2019
8.30 A.M - 11.30 A.M.

INSTRUCTIONS

- Answer any THREE Questions
- You may use advanced calculators.
- Do not write anything on the question paper

QUESTION ONE - (20 MARKS)
(a) Write brief notes on linear differential equations.
[4 Marks]
(b) Use variation of parameters to solve the initial value problem given that $y=x$ and $y=e^{x}$ are solutions to the homogeneous function $(x-1) y^{\prime \prime}-x y^{\prime}+y=(x-1)^{2} ; y$ $(0)=3, y^{\prime}(o)=-6$.
(c) Solve the homogeneous differential equation using the method of immerse operator.
$\left(2 D^{2}+D-1\right) y=16 \cos 2 x$
[8 Marks]

QUESTION TWO - (20 MARKS)
(a) (i) State the necessary and sufficient condition that n functions are a fundamental set.
[2 Marks]
(ii) What is the significance of the condition in a (i) above.
[2 Marks]
(b) Find the general solution of the differential equation given that $y=e^{x}$ is a solution of the homogeneous equation $x y^{\prime \prime}-(2 x+1) y^{\prime}+(x+1) y=x^{2}$.
[10 Marks]
(c) Solve the following differential equations using the method indicated.
(i) $\dot{x}+x=\epsilon x^{2}, x(o)=1$ Regular perturbation method.
[3 Marks]
(ii) $\dot{x}+x=1 ; x(0)=0$ singular perturbation method
[3 Marks]

QUESTION THREE [20 MARKS]

(a) Use the reduction of order method to solve the differential equation give that $y=x$.

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 x y^{\prime}+4 y=0 \tag{10Marks}
\end{equation*}
$$

(b) Using the method of undetermined coefficients, solve the system of differential equations.
[10 Marks]

$$
\begin{gathered}
\dot{x}_{1}=3 x_{1}-3 x_{2}+2 \\
\dot{x}_{1}=-6 x_{1}-t
\end{gathered}
$$

QUESTION FOUR: [20 MARKS]

(a) State and prove the principle of superposition of linear differential equations.
[4 Marks]
(b) Solve the system [8 Marks]

$$
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right)=\left(\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

(c) Find the fundamental set of the differential equation given that $y=x$ is a solution.

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0 \tag{8Marks}
\end{equation*}
$$

QUESTION FIVE: [20 MARKS]

(a) (i) Define a solution of linear differential equations.
(ii) Explain the difference between the general solution and complete solution of a linear differential equation.
(b) (i) Show that $\left\{e^{-3 t}, e^{-t}, e^{-6 t} \quad\right\}$ is a fundamental set.
(ii) Find the differential equations associated with the set in b (i) above.
(c) Solve the third order Cauchy-Euler equation $2 x^{2} y+2 x y^{\prime}-3 y=0$ for $x>0$. [10 Marks]

