MATH 821

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 821: ORDINARY DIFFERENTIAL EQUATIONS I

STREAMS: M.Sc (APPLIED MATHS)

TIME: 3 HOURS

8.30 A.M - 11.30 A.M.

HURSDAY 8/08/2019

INSTRUCTIONS

- Answer any **THREE Questions**
- You may use advanced calculators.
- Do not write anything on the question paper

QUESTION ONE - (20 MARKS)

(a) Write brief notes on linear differential equations.

- (b) Use variation of parameters to solve the initial value problem given that y = x and y = e^x are solutions to the homogeneous function (x 1)y" xy' + y = (x 1)²; y
 (0) = 3, y'(o) = -6. [8 Marks]
- (c) Solve the homogeneous differential equation using the method of immerse operator. $(2D^2 + D - 1)y = 16 \cos 2x$ [8 Marks]

QUESTION TWO - (20 MARKS)

(a) (i) State the necessary and sufficient condition that n functions are a fundamental set.

[2 Marks]

[4 Marks]

- (ii) What is the significance of the condition i n a (i) above. [2 Marks]
- (b) Find the general solution of the differential equation given that $y = e^x$ is a solution of the homogeneous equation $xy'' (2x + 1)y' + (x + 1)y = x^2$. [10 Marks]
- (c) Solve the following differential equations using the method indicated.
 - (i) $\dot{x} + x = \epsilon x^2, x(o) = 1$ Regular perturbation method.[3 Marks](ii) $\dot{x} + x = 1; x(0) = 0$ singular perturbation method[3 Marks]

MATH 821

QUESTION THREE [20 MARKS]

(a) Use the reduction of order method to solve the differential equation give that y = x. $x^2y'' - 4xy' + 4y = 0$ [10 Marks]

(b) Using the method of undetermined coefficients, solve the system of differential equations. [10 Marks]

$$\dot{x}_1 = 3x_1 - 3x_2 + 2 \\ \dot{x}_1 = -6x_1 - t$$

QUESTION FOUR: [20 MARKS]

(a) State and prove the principle of superposition of linear differential equations. [4 Marks]

(b) Solve the system [8 Marks]

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

(c) Find the fundamental set of the differential equation given that y = x is a solution. $X^2y'' - 3xy' + 3y = 0$ [8 Marks]

QUESTION FIVE: [20 MARKS]

(a) (i) Define a solution of linear differential equations. [2 Marks]

(ii) Explain the difference between the general solution and complete solution of a linear differential equation. [2 Marks]

(b) (i) Show that $\{e^{-3t}, e^{-t}, e^{-6t}\}$ is a fundamental set. [2 Marks] (ii) Find the differential equations associated with the set in b(i) above. [4 Marks]

(c) Solve the third order Cauchy-Euler equation $2x^2y + 2xy' - 3y = 0$ for x > 0. [10 Marks]