CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTERS OF SCIENCE IN PURE MATHEMATICS

MATH 809: COMPLEX ANALYSIS I

STREAMS: BED (ARTS)

TIME: 3 HOURS

11.30 AM – 2.30 PM

DAY/DATE: TUESDAY 03/12/2019 INSTRUCTIONS:

- Answer any three questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a closed book exam, no reference materials are allowed in the examination room
- There will be NO use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (20 MARKS)

(a)	Explain the concept of conformal mapping.	[3 marks]
-----	---	-----------

(b) Find the image of the square $\pm 1 \pm i$ under the transformation L(z) = 3z - 5 + 2i. Show that all angles are maintained both in magnitude and sense. [11 marks]

(c) Show that $\cot^{-1}(z) = \frac{1}{2i} \ln\left(\frac{z+i}{z-i}\right)$ and hence determine the principal value of z for which $\cot z = 2i$ [6 marks]

QUESTION TWO (20 MARKS)

- (a) Explain what is meant by a linear fractional transformation. [3 marks]
- (b) Find a linear fractional transformation which maps the vertices 1 + i, -i, 2 i of a triangle A on the z plane into the points 0,1,1 on the w-plane. [5 marks]
- (c) Use the Beta function to show that $\int_0^\infty \frac{x^3}{1+x^6} dx = \frac{\pi}{3\sqrt{3}}$ [4 marks]

(d) Find general expression for
$$\Gamma\left(k+\frac{1}{2}\right)$$
 for $k = 0,1,2,...$ [4 marks]

(e) Let
$$f(z) = \frac{(z^2+4)^3}{(z^2+2z+2)^5}$$
, use the argument theorem to evaluate $\int_c \frac{f'(z)}{f(z)} dz$ where C is the rectangle enclosed by the line $y = 2.7$, $x = 3$, $y = 0$ and $x = -2$ [4 marks]

QUESTION THREE (20 MARKS)

(a)	State without proof Rouches' Theorem.	[2 marks]
(b)	Determine the number of roots for function $F(z) = 3z^6 - 412z^2 + 5z + 2 \le z \le 4$.	3 inside region [4 marks]

(c) Prove that the function $\int_0^\infty t^4 e^{-2zt} dt$ is analytic for all the points z for which Rez > 0. Find an analytic continuation of f(z) into Rez < 0. [6 marks]

(d) Explain the maximum and minimum modulus theorem. [4 marks]

(e) Expand
$$f(z) = \frac{1}{(3+3)(z+1)}$$
 in a Laurent series valid for $0 < |z+1| < 2$. [4 marks]

QUESTION FOUR (20 MARKS)

(a)	State without proof Hadamard Theorem.	[2 marks]
(b)	State and prove the Poissons integral formular for a circle.	[10 marks]
(c)	Evaluate the following $\int_c \frac{\cos \pi z}{(z+i)^4} dz$, $c: z = 2$	[4 marks]
(d)	Prove that if F(Z) is analytic inside and on the boundary C of a simply cor R and a is any point inside the curve C then $\int_C \frac{F(Z)}{Z-a} dZ = 2\pi i F$	nnected region [4 marks]
