CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF

 MASTERS OF SCIENCE IN PURE MATHEMATICS
MATH 809: COMPLEX ANALYSIS I

STREAMS: BED (ARTS)

TIME: 3 HOURS
11.30 AM - 2.30 PM

$$
1+0010
$$

DAY/DATE: TUESDAY 03/12/2019
INSTRUCTIONS:

- Answer any three questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a closed book exam, no reference materials are allowed in the examination room
- There will be NO use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (20 MARKS)

(a) Explain the concept of conformal mapping.
(b) Find the image of the square $\pm 1 \pm i$ under the transformation $L(z)=3 z-5+2 i$. Show that all angles are maintained both in magnitude and sense.
[11 marks]
(c) Show that $\cot ^{-1}(z)=\frac{1}{2 i} \operatorname{In}\left(\frac{z+i}{z-i}\right)$ and hence determine the principal value of z for which $\cot z=2 i$
[6 marks]

QUESTION TWO (20 MARKS)

(a) Explain what is meant by a linear fractional transformation.
[3 marks]
(b) Find a linear fractional transformation which maps the vertices $1+i,-i, 2-i$ of a triangle A on the z plane into the points $0,1,1$ on the w-plane. [5 marks]
(c) Use the Beta function to show that $\int_{0}^{\infty} \frac{x^{3}}{1+x^{6}} d x=\frac{\pi}{3 \sqrt{3}}$
(d) Find general expression for $\Gamma\left(k+\frac{1}{2}\right)$ for $k=0,1,2, \ldots$
[4 marks]
(e) Let $f(z)=\frac{\left(z^{2}+4\right)^{3}}{\left(z^{2}+2 z+2\right)^{5}}$, use the argument theorem to evaluate $\int_{c} \frac{f^{\prime}(z)}{f(z)} d z$ where C is the rectangle enclosed by the line $y=2.7, x=3, y=0$ and $x=-2 \quad$ [4 marks]

QUESTION THREE (20 MARKS)

(a) State without proof Rouches' Theorem.
(b) Determine the number of roots for function $F(z)=3 z^{6}-412 z^{2}+5 z+3$ inside region $2 \leq|z| \leq 4$.
(c) Prove that the function $\int_{0}^{\infty} t^{4} e^{-2 z t} d t$ is analytic for all the points z for which $\operatorname{Rez}>0$. Find an analytic continuation of $\mathrm{f}(\mathrm{z})$ into $\operatorname{Rez}<0$.
(d) Explain the maximum and minimum modulus theorem.
(e) Expand $f(z)=\frac{1}{(3+3)(z+1)}$ in a Laurent series valid for $0<|z+1|<2$. [4 marks]

QUESTION FOUR (20 MARKS)

(a) State without proof Hadamard Theorem.
[2 marks]
(b) State and prove the Poissons integral formular for a circle.
[10 marks]
(c) Evaluate the following $\int_{c} \frac{\operatorname{Cos} \pi z}{(z+i)^{4}} d z, c:|z|=2$
[4 marks]
(d) Prove that if $\mathrm{F}(\mathrm{Z})$ is analytic inside and on the boundary C of a simply connected region R and a is any point inside the curve C then $\int_{C} \frac{F(Z)}{Z-a} d z=2 \pi i F$

