MATH 803

CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE (PURE MATHEMATICS)

MATH 803: GENERAL TOPOLOGY I

STREAMS: MSC (PURE MATHS)

TIME: 3 HOURS

11.30 A.M. – 2.30 P.M.

DAY/DATE: THURSDAY 05/12/2019

INSTRUCTIONS:

- Answer any three questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a closed book exam, no reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answer legibly and use your time wisely

QUESTION ONE (20 MARKS)

- (a) Let A be a compact subset of a Hausdorff space X and suppose $p \in X/A$, show that there exists open sets G and H such that $p \in G, A \subset H = \emptyset$ [4 marks]
- (b) Show that an open interval A = (0, 1) on the real line \mathbb{R} with the usual topology is not subsequentially compact. [3 marks]
- (c) Prove that every bounded closed interval B = [a, b] is countably compact. [3 marks]
- (d) Let $G \cup H$ be a disconnection of B. Show that $B \cap G$ and $B \cap H$ are separated sets

[5 marks]

(e) Let A be a subset of a Topological space X. prove that if X is sequentially compact then X is countably compact. [5 marks]

UNIVERSITY

MATH 803

QUESTION TWO (20 MARKS)

(a)	Prove that every arcwise connected set A is connected			
(b)	plain what is meant by a subset of a topological space X being compact and hence			
	show that every compact subset A of Hausdorff space is closed.	[4 marks]		
(c)	Show that a continuous image of a compact set is also compact.	[4 marks]		
(d)	Explain what is meant by a class $\{A_i\}$ of sets having a finite intersection property and			
	hence show if or not the class $A = \{(0, 1), (0, \frac{1}{2}), (0, \frac{1}{3}),\}$ of intervals in \mathbb{R} h	nas a finite		
	intersection property	[4 marks]		
(e)	Let \mathcal{G} be a base for a second countable space X . Prove that \mathcal{G} is reducible to a co	ountable		
	base for X.	[4 marks]		

QUESTION THREE (20 MARKS)

(a)	Define a continuous map and show that a map is continuous if and only if the inverse				
	image of an open set is open	[5 marks]			
(b) Show that a topological space is a Hausdorff space if and only if any net has					
	limit.	[5 marks]			
(c)	State without proof Tiestze Extension Theorem	[2 marks]			
(d)	Prove that a subset of a countable set is countable	[4 marks]			
(e)	Prove that the property of regular space is hereditary	[4 marks]			

QUESTION FOUR (20 MARKS]

(a)	Consider the topology $\tau = \{X, \emptyset, \{a\}, \{b, c\}\}$ on $X = \{a, b, c\}$ and the topology						
	$\tau^* = \{Y, \emptyset, \{0\}\}$	$0 \text{ on } Y = \{u, v\}$	}. Determi	ne the defini	ing subbase	of product	topology
	X _x Y.						[4 marks]
		• .		1 .	X 7 · 1 ·		

(b) Prove that every projection mapping on a product space X is a bicontinous mapping

(c) Prove that a completely regular is also regular [3 marks]
(d) State and proof the Urysohn's Lemma. [9 marks]