**CHUKA** 



### UNIVERSITY

# UNIVERSITY EXAMINATIONS THARAKA CAMPUS

# SECOND YEAR EXAMINATION FOR THE AWARD OF CERTIFICATE IN COMPUTER SCIENCE

COMP 00108: INTRODUCTION TO DIGITAL LOGIC AND DATA COMMUNICATION

STREAMS: CERT COMP SCI Y1S2 TIME: 2 HOURS

DAY/DATE: TUESDAY 3/12/2019 11.30

A.M - 1.30 P.M

#### **INSTRUCTIONS:**

• Answer question **ONE** and **TWO** other questions

- Do not write anything on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be **NO** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely.
- Marks are awarded for clear and concise answers.

## QUESTION ONE (30 Marks)

- a. Using diagrams, briefly describe the THREE main data communication modes. (6 Marks)
- b. Describe the operation of the following gates while illustrating their symbols and the truth table.

|    | a.i. AND gate<br>a.ii. NOT gate                                          | (2 marks)<br>(2 marks) |
|----|--------------------------------------------------------------------------|------------------------|
|    | a.iii. OR gate a.iv. XOR gate                                            | (2 marks)<br>(2 marks) |
| c. | Distinguish between combinational and sequential circuits                | (4 marks)              |
| d. | State two properties shared by all types of flip-flops                   | (4 Marks)              |
| e. | State and explain two types of parity checking in error detection        | (4 Marks)              |
| f. | With the aid of diagrams, explain the operation of each type in e) above | (4 Marks)              |

### SECTION B (ANSWER ANY TWO QUESTIONS)

### QUESTION TWO (20 MARKS)

- a. Using well -labelled diagrams, explain the function of each of the following circuits:
  - a.i. Decoder (5 Marks)
  - a.ii. Multiplexer (5 Marks)
- b. Draw a truth table and the logic gate implementation of the Boolean equation below:

(10 Marks)

$$F + \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}$$

## QUESTION THREE (20 MARKS)

- a. Illustrate the operation of each of the following flip-flops using their graphical symbols and truth tables:
  - a.i.i. S-R Flipflop (3 Marks)
  - a.i.ii. J-K Flipflop (3 Marks)
  - a.i.iii. D Flipflop (3 Marks)
- b. Briefly describe the operation of a ripple counter. (5 Marks)
- c. Draw each of the following for the ripple counter described in (b) above:
  - a.i.i. Sequential Circuit (3 Marks)
  - a.i.ii. Timing Diagram (3 Marks)

#### QUESTION FOUR (20 Marks)

- a. Using NAND gates only, draw a logic gate implementation to realize the AND gate, OR gate and NOT Gate. (6 Marks)
- b. Using NOR gates only, draw a logic gate implementation to realize the AND gate, OR gate and NOT Gate. (6 Marks)
- c. Construct a truth table and draw the logic gate diagram for the following Boolean expressions:

### COMP 00108

i. 
$$ABC + \overline{A}\overline{B}\overline{C}$$
  
(4 Marks)  

$$ABC + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}$$
 ii. (4 Marks)

## QUESTION FIVE (20 Marks)

- a. Discuss the evolution of computers in terms of generations, stating and describing the technology used within each generation. (12 Marks)
- b. Briefly discuss each of the following as relates to error detection and correction (8 Marks)
  - a.i. Cyclic Redundancy Check
  - a.ii. Checksum

-----