
CHUKA

UNIVERSITY

[12 marks]

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATIONS FOR THE AWARD OF BACHELOR OF SCIENCE

CHEM 419: CHEMISTRY OF TRANSITION METALS

STREAMS: BSC (Y4S1) TIME: 2 HOURS

DAY/DATE: THURSDAY 05/12/2019 8.30 A.M. – 10.30 A.M.

INSTRUCTIONS: Answer Question **ONE** and Any other **TWO Questions**

QUESTION ONE [30MARKS]

- (a) Explain the position and classification of the d-block elements in the periodic table and give reasons why they are called transition elements. [3 marks]
- (b) Write the <u>expected electronic configuration</u> and the <u>observed electronic configuration</u> of the following elements belonging to the first transition series. Give reasons for any irregularities from the expected electronic configuration.

[5marks]

i. Cr [Z = 24], ii. Cu [Z=29] iii. Mn [Z=25]

- (c) Discuss the trends in the following properties of first row transition metals [10 marks]
 - i) Melting and Boiling points
 - ii) Atomic and Ionic sizes (for a given oxidation state)
 - iii) Ionization enthalpies
- (d) Give explanation to the following facts

(i) Many of the transition metals and their compounds act as catalysts

CHEM 419

- (ii) In transition metal series, the metal which exhibit the greatest number of oxidation state, occurs in the middle of the series.
- (iii) Cr, Mo and W are hard metals while Zn, Cd and Hg are not very hard.
- (iv) The metallic radii of the second (4d) transition series are virtually the same as those of the corresponding members of the third (5d) transition series.
- (v) Among the lanthanides, Ce³⁺ is easily oxidized and forms tetra positive ion Ce⁴⁺ in aqueous solution which is used as an oxidizing agent in volumetric analysis.
- (vi) Fe^{3+}/Fe^{2+} redox couple has less positive electrode potential than Mn^{3+}/Mn^{2+} couple

QUESTION TWO [20 MARKS]

- (a) Most of the transition metals form coloured compounds
 - (i) Giving sufficient reasons explain why most of the transition metal compounds are remarkably coloured. [6 marks]
 - (ii) Identify the transition metals which are exceptional from the above statement and give reasons. [2]

marks]

- (iii). Explain why copper(II)sulphate is blue in colour when dissolved in water but turns yellow when treated with concentrated hydrochloric acid. [1.5 marks]
- (b) By qualifying your answer, comment on the statement that the metals of the first transition series possess many properties different from those of the heavier transition metals.

 [3marks]
- (c) Explain the extent to which the electronic configuration decide the stability of Oxidation states in the first series of transition element, Illustrate your answer with examples

[2.5

marks] (d) For M^{2+}/M and M^{3+}/M^{2+} couples the E^0 for some metals are as follows:

M^{2+}/M	E^0	M^{3+}/M^{2+}	$\underline{E^0}$
Cr ²⁺ /Cr	-0.9V	Cr^{3+}/Cr^{2+}	-0.4V
Mn^{2+}/Mn	-1.2V	$Mn^{3+}\!/Mn^{2+}$	+1.5V
Fe ²⁺ /Fe	-0.4V	Fe^{3+}/Fe^{2+}	-0.4V

Use the above data to comment on

CHEM 419

- (i). The stability of Fe³⁺ in acid solution as compared to that of Cr³⁺ or Mn³⁺ [2 marks]
- (ii) The ease with which Fe can be oxidized as compared to a similar process for either Cr or Mn

marks]

QUESTION THREE [20 MARKS]

- (a) What is meant by the term disproportionation? [Hint: Use the following two reactions as examples to illustrate your explanation] [3 marks]
 - (i) $3CrO_4^{3-} + 8H^+$

$$2CrO_4^{2-} + Cr^{3+} + 4H_2O$$

- (ii) $3MnO_4^{2-} + 4H^+$ $2MnO_4^{-} + MnO_2 + 2H_2O$
- (b) (i) Discuss why the highest oxidation states of transition metals are exhibited in their oxides or fluorides only? [2 marks]
 - (ii) By giving an example in each case, distinguish between a strong oxidizing and a strong [2 reducing agent

marks]

- (c) Transition metals and many of their compounds are paramagnetic and exhibit different magnitudes of paramagnetic character.
 - (i) Explain the origin of the magnetic moments for transition metals and give the spin only formula for calculating magnetic moment. [2.5 marks]
 - (ii) Calculate the spin only magnetic moment of M^{2+} (Z= 27)

[2.5 marks]

[3

- (d) (i) What are interstitial compounds? Why are such compounds well known for transition metals? [3 marks]
 - (ii) Give two examples of interstitial compounds

[2 marks]

(iii) Give characteristics of interstitial compounds

[3 marks]

QUESTION FOUR [20 MARKS]

- Briefly explain why electronic configuration of lanthanides are not known with certainty (a) and give reasons why actinide elements show larger number of oxidation states than lanthanides? [2.5 marks]
- Explain why lanthanum, gadolinium and lutetium show different electronic configuration (b) from the other lanthanides. Give the common oxidation state exhibited by these three elements. [3 marks]

CHEM 419

(c)	Distinguish between lanthanide and actinide contractions. Explain why actinide		
	contraction is more than lanthanide contraction.	[2 marks]	
(d)	Explain the cause and consequences of lanthanide contraction	[3.5 marks]	
(e)	Compare and contrast the chemistry of the lanthanides with that of actinides with special		
	reference to (i) Electronic configuration (ii). Oxidation state (iii) chemical re	eactivities.	
		[9	
marks]			