CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION SCIENCE, BACHELOR OF SCIENCE

CHEM 322: PHYSICAL CHEMISTRY III

STREAMS: BED (SCI), BSC

DAY/DATE: TUESDAY 03/12/2019 INSTRUCTIONS: **TIME: 2 HOURS**

2.30 PM – 4.30 PM

Answer Question One and any other Two Questions

Useful Data

QUESTION ONE (30 MARKS)

(a) Define with appropriate examples, the following terms

(i)	Closed system	[1 mark]
(ii)	Adiabatic process	[1 mark]
(iii)	Thermal equilibrium	[1 mark]
(iv)	Intensive and extensive variables	$\begin{bmatrix} 2 \frac{1}{2} \text{ marks} \end{bmatrix}$

(b)	(i)	The internal energy change when 1.0 mol $CaCO_3$ in the form of calcite converts to orgonite is +0.21KJ. Calculate the difference between the enthalpy		
change that the	e and e densit	ies	the change in internal energy when the pressur of the solids are 2.71g Cm ⁻³ and 2.93g	re is 1.0 bar given
			[2 marks]	
	(ii)	Deterr	nine the difference in the work done when, 500ml of a atmospheres is compressed to 100 ml reversibly and	gas at pressure of 2
		(I) (II)	Isothermally A diabatically (y for this gas is 1.35)	[1 ½ marks] [2 ½ marks]
fusion 2494	(iii)		mole of ice at and 4.6 torr pressure is converted to war ne temperature and pressure by increasing the space ab calculate the changes in enthalpy and intrinsic energy of ice is 334.7 J/g and latent heat of vaporization of la joules per gram.	oove ice sufficiently; . Given latent heat of
			[4 marks]	
(c)	(i)	Consid	der a mass of air m=10kg cooled isochorically from P ₁ = the temperature of the surroundings T2=300K. determ	-
change	e of		the air, the surrounding and universe. Commer [6 marks]	nt on yours obtained.
enthalp	(ii) by of the		quilibrium constant Kp for a reaction is on	. Calculate the
QUES	TION '	TWO ([1 mark] 20 MARKS)	
(a) for an	(i) n ideal g		e the integral Clausius Clapeyron equation in the form [1 ½ marks]	
	(ii)		3.6K and 372.6K the vapour pressure of $_{(i)}$ are 1.018 and tively calculate the heat of vapourization of water in Jo [1 $\frac{1}{2}$ marks]	
(b)	(i)	Explai	in the following observations "though entropy is a fund function and free energy is a derived one, the latter ca conveniently".	
	[2 mar	ks]		
	(ii)	State t	he third law of thermodynamics.	[¹ / ₂ marks]

CHEM 322

Discuss the importance of the third law of themodynamics and its limitation. (iii) [8¹/₂

marks]

(c)(i) Calculate the entropy change when one kilogram of water at is converted to super heated steam at 200 under constant atmospheric pressure. (Specific capacity of liquid water = 4180 J/Kg), heat

Specific heat capacity of steam = (1670+0.49T) J/kg at and latent heat of vaporization is

(ii) 5 moles of an ideal gas, initially at 50 atm and 300K is expanded irreversibly where the pressure suddenly drops to 10atm. The work involved is 4000 J.

- Show that the final temperature is greater than a reversible adlabatic **(I)** expansion at the same pressure.
- Cv=1.5R, calculate the entropy change during the irreversible expansion. (II)

 $[3 \frac{1}{2}]$

marks] **QUESTION THREE (20 MARKS)**

(a)	Briefly explain the following:			
	(i)	Carnot cycle	[7 marks]	
	(ii)	Carnot refrigerator	[1 mark]	
	(iii)	Carnot theorem	[½ mark]	

(b) Two moles of a perfect gas underwent the following processes: A reversible isobaric expansion from (1.0 atm, 20.0 L) to (1.0 atm, 40.0L) A reversible isochoric change of state from (1.0 atm, 40.0L) to (0.5 atm, 40.0L) A reversible isothermal compression from (0.5 atm, 40.0L) to (1.0 atm, 20.0L)

- Sketch and label each of the processes on the same P V diagram. [1 mark] (i)
- Calculate the total work (w) and the total heat change (q) involved in the above (ii) processes. [3

marks]

(iii) Calculate the change in internal energy, enthalpy and entropy for the overall process $[\frac{1}{2} \text{ mark}]$

(c) A heated copper block at 130 loses 340J of heat to the surrounding which are at room temperature of 32. Calculate

(i)	The entropy change of the system (copper block).	[½ mark]
-----	--	----------

The entropy change of the surrounding. $[\frac{1}{2} \text{ mark}]$ (ii)

mark]	(iii)	The total entropy change in the universe due to this process. temperature of the block and the surroundings remain		
(d)	Assuming ideal gas thermodyanic efficiency, calculate the amount of work needed to freeze 180g of water at 0 when the surrounding air is at a temperature of			
	(i)	25	[1 mark]	
mark]	(ii)	47(Latent heat of fusion of ice is 6.01 KJ mol ⁻¹) comment on	your answers [½	
(e)	Give	a brief explanation of Trouton's rule.	[2 marks]	
	(ii)	Calculate the vapor pressure of a liquid at 25 if its normal bo 80.2	iling point is [1 mark]	
QUE	STION	FOUR (20 MARKS)		
(a)	(i)	Derive the equation given below which shows variation of G function with temperature at a constant pressure [4 ¹ / ₂ ma		
Calcu	(ii) llate for	r the reaction at 300K.	for it is -60.21JK ⁻¹ . 1 mark]	
(b)	Predict the sign of entropy change for each of the following processes. Give reason(s) for each case.			
	(i)	[½ mark]		
	(ii)	[½ mark]		
	(iii)	Hand boiling of an egg	[1 ½ marks]	
	(iv)	Devitrification of glass	[½ mark]	
(c)	(i)	For a certain reaction Gibbs free energy change (cal /mole)= logT-72.59T. Calculate the entropy change in JK ⁻¹ m change in KJ mol ⁻¹ of the reaction at 27 (1 cal = 4.18	ol ⁻¹ and the enthalpy 4J)	
	(ii)	Two moles of a monoatomic gas initially at 4.0 bar and 47 un expansion in an insulated container. Calculate the ten	-	

the mark]		pressure reduced to 3.0 bar.	[1
Cal m (d)	(iii) ol ⁻¹ and (i)	Establish the condition for spontaneous vaporization of water given = 26 Cal K ⁻¹ [1 mark] Prove that [3 ½ marks]	
showr	(ii) 1	The state of a mole of an ideal gas changed from State A (2 P,V) through a different processes and finally returned to the initial state reversible below:	

	Calculate the total work done by the system and	heat absorbed by the system in
	the cyclic process.	[3
marks]		