CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

MATH 449: PROBABILITY THEORY STREAMS: BSc

TIME: 2 HOURS.

DAY/DATE:TUESDAY 10/12/2019

8.30 PM-10.30 PM

Instruction: Attempt Question 1 and any other two

Question 1 (30 marks)

a). i) Define a *field* (also known as *algebra*) as used in the measure and probability theory. State the conditions that a given filed say \mathcal{A} must meet in order to be a field.

(4 marks)

ii) Consider a field denoted by \mathcal{A} and let $A_1, A_2, \ldots, A_n \in \mathcal{A}$. Using the ideas in (i) above, show that $\bigcup_{i=1}^n A_i \in \mathcal{A}$.

(5 marks)

iii) Suppose $\mathcal A$ is a class of sets containing Ω and satisfies

$$A, B \in \mathcal{A}$$
 implies $A \setminus B = AB^c \in \mathcal{A}$.

Show that \mathcal{A} is a field.

(5 marks)

- b). Consider a probability measure defined as $(\Omega, \mathcal{F}, \mathbb{P})$. Required:
 - i) Explain each of the elements defined in the above space $(\Omega, \mathcal{F}, \mathbb{P})$.

(3 marks)

ii) Consider $A \in \Omega$, explain all the properties of \mathbb{P} . Use mathematical expressions.

(3 marks)

- iii) If two dice are rolled once and we are interested in the events where the two numbers of that show up are equal (A_1) , their sum are odd (A_2) , their sums are 13 (A_3) . Apply the concept of a probability measure to come up with Ω , \mathcal{F} and \mathbb{P} respectively for this experiment. (6 marks)
- c). Suppose, $Y_1, Y_2, ...$ is a sequence of random variables with $E(Y_n) \rightarrow \mu$ and $var(Y_n) \rightarrow 0$. Show that $Y_n \rightarrow \mu$ in probability.

(4 marks)

(10 marks)

Question 2 (20 marks)

- a). (Borel-Cantelli Lemma) Suppose, A_1, A_2, \ldots is a sequence of events
 - i) If $\sum \mathbb{P}(A_n) < \infty$ then, $\mathbb{P}(A_n, i.o) = \mathbb{P}(\text{Lim Sup } A_n) = 0$
 - ii) If $\sum \mathbb{P}(A_n) = \infty$ and A_1, A_2, \dots are independent then $\mathbb{P}(A_n, i.o) = \mathbb{P}(\text{Lim Sup } A_n) = 1$.

Prove.

b). If

$$F(X) = P[X \le x]$$

is continuous in *x*. Show that Y = F(X) is measurable and that *Y* has a Uniform distribution

$$P[Y \le y] = y, 0 \le y \le 1$$

(10 marks)

Question 3 (20 marks)

a). Let X_n be iid, $E(X_n) = \mu$ and $Var(X_n) = \sigma^2$. Set $\overline{X} = \sum_{i=1}^n X_i/n$. Show that

$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\xrightarrow{p}\sigma^{2}$$

(10 marks)

b). Suppose $X_k, x \ge 1$ are independent random variables and suppose that X_k has a gamma density $f_k(x)$

$$f_k(x) = \frac{x^{k-1}e^{-x}}{\Gamma(\gamma_k)}, x > 0, \gamma_k > 0$$

Give necessary and sufficient conditions for $\sum_{k=1}^{\infty} X_k$ to converge almost surely.

(10 marks)

Question 4 (20 marks)

Let E_n be events. Verify that

$$\sum_{k=1}^{n} 1_{E_k} = 1_{\bigcup_{k=1}^{n} E_k} \sum_{k=1}^{n} 1_k E_k$$

and hence use the Schwartz inequality to prove that

$$P(\bigcup_{k=1}^{n} E_k) \ge \frac{(E(\sum_{k=1}^{n} 1_{E_k}))^2}{E(\sum_{k=1}^{n} 1_{E_k})^2}.$$

(20 marks)

Question 5 (20 marks)

Suppose $T : (\Omega_1, B_1) \mapsto (\Omega_2, B_2)$ is a measurable mapping and *X* is a random variable on Ω_1 . Show that $X \in \sigma(T)$ iff there is a random variable *Y* on (Ω_2, B_2) such that

$$X(\omega_1) = Y(T(\omega_1)), \forall \omega_1 \in \Omega_1.$$

(20 marks)
