CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

MATH 449: PROBABILITY THEORY
STREAMS: BSc
DAY/DATE:TUESDAY 10/12/2019

TIME: 2 HOURS.
8.30 PM-10.30 PM

Instruction: Attempt Question 1 and any other two

Question 1 (30 marks)

a). i) Define a field (also known as algebra) as used in the measure and probability theory. State the conditions that a given filed say \mathcal{A} must meet in order to be a field. (4 marks)
ii) Consider a field denoted by \mathcal{A} and let $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{A}$. Using the ideas in (i) above, show that $\bigcup_{i=1}^{n} A_{i}=\bigcap_{i=1}^{n} A_{i} \in \mathcal{A}$.
iii) Suppose \mathcal{A} is a class of sets containing Ω and satisfies

$$
A, B \in \mathcal{A} \text { implies } A \backslash B=A B^{c} \in \mathcal{A}
$$

Show that \mathcal{A} is a field.
b). Consider a probability measure defined as $(\Omega, \mathcal{F}, \mathbb{P})$. Required:
i) Explain each of the elements defined in the above space $(\Omega, \mathcal{F}, \mathbb{P})$.
ii) Consider $A \in \Omega$, explain all the properties of \mathbb{P}. Use mathematical expressions.
(3 marks)
iii) If two dice are rolled once and we are interested in the events where the two numbers of that show up are equal $\left(A_{1}\right)$, their sum are odd $\left(A_{2}\right)$, their sums are $13\left(A_{3}\right)$. Apply the concept of a probability measure to come up with Ω, \mathcal{F} and \mathbb{P} respectively for this experiment.
(6 marks)
c). Suppose, Y_{1}, Y_{2}, \ldots is a sequence of random variables with $E\left(Y_{n}\right) \rightarrow \mu$ and $\operatorname{var}\left(Y_{n}\right) \rightarrow 0$. Show that $Y_{n} \rightarrow \mu$ in probability.

Question 2 (20 marks)

a). (Borel-Cantelli Lemma) Suppose, A_{1}, A_{2}, \ldots is a sequence of events
i) If $\sum \mathbb{P}\left(A_{n}\right)<\infty$ then, $\mathbb{P}\left(A_{n}\right.$, i.o $)=\mathbb{P}\left(\operatorname{Lim} \operatorname{Sup} A_{n}\right)=0$
ii) If $\sum \mathbb{P}\left(A_{n}\right)=\infty$ and A_{1}, A_{2}, \ldots are independent then $\mathbb{P}\left(A_{n}\right.$, i.o $)=\mathbb{P}\left(\operatorname{Lim} \operatorname{Sup} A_{n}\right)=1$.

Prove.
(10 marks)
b). If

$$
F(X)=P[X \leq x]
$$

is continuous in x. Show that $Y=F(X)$ is measurable and that Y has a Uniform distribution

$$
P[Y \leq y]=y, 0 \leq y \leq 1
$$

Question 3 (20 marks)

a). Let X_{n} be iid, $E\left(X_{n}\right)=\mu$ and $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}$. Set $\bar{X}=\sum_{i=1}^{n} X_{i} / n$. Show that

$$
\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \xrightarrow{p} \sigma^{2}
$$

b). Suppose $X_{k}, x \geq 1$ are independent random variables and suppose that X_{k} has a gamma density $f_{k}(x)$

$$
f_{k}(x)=\frac{x^{k-1} e^{-x}}{\Gamma\left(\gamma_{k}\right)}, x>0, \gamma_{k}>0
$$

Give necessary and sufficient conditions for $\sum_{k=1}^{\infty} X_{k}$ to converge almost surely.

Question 4 (20 marks)

Let E_{n} be events. Verify that

$$
\sum_{k=1}^{n} 1_{E_{k}}=1_{\cup_{k=1}^{n} E_{k}} \sum_{k=1}^{n} 1_{k} E_{k}
$$

and hence use the Schwartz inequality to prove that

$$
P\left(\cup_{k=1}^{n} E_{k}\right) \geq \frac{\left(E\left(\sum_{k=1}^{n} 1_{E_{k}}\right)\right)^{2}}{E\left(\sum_{k=1}^{n} 1_{E_{k}}\right)^{2}}
$$

(20 marks)

Question 5 (20 marks)

Suppose $T:\left(\Omega_{1}, B_{1}\right) \longmapsto\left(\Omega_{2}, B_{2}\right)$ is a measurable mapping and X is a random variable on Ω_{1}. Show that $X \in \sigma(T)$ iff there is a random variable Y on $\left(\Omega_{2}, B_{2}\right)$ such that

$$
X\left(\omega_{1}\right)=Y\left(T\left(\omega_{1}\right)\right), \forall \omega_{1} \in \Omega_{1}
$$

(20 marks)

