CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

CHEM 221: PHYSICAL CHEMISTRY II

STREAMS: BSC (CHEM)

TIME: 2 HOURS

DAY/DATE: MONDAY 08/4/2019

11.30 A.M. – 1.30 P.M.

INSTRUCTIONS: Answer question ONE and any other TWO questions

QUESTION ONE (30 MARKS)

(a)	(i)) Explain why the heat capacity at a constant volume (CV) value for N_2 is always			
		found to be less than that of Cl_2 at ordinary temperature [3			
marks]]				
	(ii)	A 2 m long tube is provided with inlets at both ends so that Hcl and NH_3 gases			
	can be admitted simultaneously. Calculate the distance from Hcl inlet end				
to the	e tube at which NH ₃ O will first appear. If two gases are admitted at the same				
time,			one from one end the other from the other end.	[2	
marks]]				
	(iii)	ii) A flask contains 10 ²⁰ molecules of He at 27°C. Determine the number of			
			molecules having:		
		(I)	Average kinetic energy	[5 marks]	
		(II)	100 times average kinetic energy	$[1\frac{1}{2} \text{ marks}]$	
(b)	If the temperature above which a Van der Waal gas cannot be liquefied is 32.3°C and				
	minimum pressure to be applied at the temperature of liquefaction is 48.2 atm,				

(i)	Calculate the diameter of gas molecule	$[3\frac{1}{2} \text{ marks}]$
	Page 1 of 6	

(ii) Calculate "a" in Angstorm and hence pressure of 60gm of the gas at 27°C with a volume of 2 litres if its molecular weight is 30

 $IA^{\circ} = 10^{-10} m$, b = effective volume per mole of the gas, a = the constant of ∞ ortionality \wedge are the

 $[2\frac{1}{2} \text{ marks}]$

(c)

(i) predict whether the aqueous solutions of the following will be acidic, neural or alkaline: Ammonium acetate, Ammonium cyanide and Ammonium

fluoride

[5 marks]

$$K_{acetic \ acid} = K_{ammonia} = 1.75 \times 10^{-5}, K_{HCN} = 6.2 \times 10^{-10}, K_{HF} = 6.8 \times 10^{-4}$$

Define the terms salt hydrolysis, hydrolytic constant and the degree of hydrolysis (ii) of a salt $[1\frac{1}{2}]$

marks]

 CH_3COONH_4 Derive an expression for the pH of an aqueous solution of (iii)

 $[5\frac{1}{2} \text{ marks}]$

(iv) Calculate the hydrolysis constant, the degree of hydrolysis and the pH of a 0.524M ammonium acetate solution ¹/₂ marks]

QUESTION TWO (20 MARKS)

The solubility of Agel is 10^{-5} mole/litre. Calculate the solubilities in (a)

- (i) Water [1 mark]
- [3 marks] (ii) 0.01M Nacl
- (iii) 0.01M NaNO₃ [1 mark]
- $(NO_3)_2$ 0.001 M Ca (iv)

Arrange the solubility of AgCl in decreasing order

The Debye – H ú ckel constant A at 25° C = 0.51, $\log Y_i = -Az + z - \sqrt{\mu}\mu = Ionic$ strentgh

[2 marks]

(b)	(i)	State the applications of the dissociation theory (Arrhenius theory) of ionizatio	n
[1 ma	rk]		
	(ii)	Explain to why PCl_5 is not an electrolyte despite the fact that PCl_5 read	cts
with		water to form H_3PO_4 and HCl and the solution is electrically	
condu	icting		
		$[1\frac{1}{2} \text{ marks}]$	
	(iii)	Discuss how a solvent influences ionization of electrolytes $[4\frac{1}{2} mathrmal{matrix}}}}} = 1} \ \begin{matrix} 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 $	rks]
(c)	(i)	With help of a suitable example, explain the importance of common ion effect analytical chemistry laboratory	in [3½
marks	5]		
	(ii)	A saturated solution of H_2S at 25°C is of the order of 0.1 molar. For H_2S ,	
		$K_1 = 9.1 \times 10^{-8}$ and $K_2 = 1.2 \times 10^{-15}$. Calculate the concentration of	of
sulphi	ide	$\frac{2-i}{i}$ in this solution and indicate the effect of doubling	F >>
$+\frac{i}{H}$	ion	concentration on the S^{ι} concentration.	
		$[2\frac{1}{2} \text{ marks}]$	
QUE	STION	THREE (20 MARKS)	
(a)	(i)	Explain why it's necessary for the solid dissolved in the liquid solvent be non-	
		volatile (in case of colligative properties)	[1½

marks]

(ii) Prove that, for a solution of a solute in a non-polar solvent at a particular

concentration, DT_b/Tb is independent of the nature of solvent

$$R = 1.987$$
 cal K^{-1} mol⁻¹, $DT_{b} =$ elevation of boiling point, $T_{b} =$ boiling point of solution

[1 mark]

(iii) Prove that,
$$Kf > Kb | Kb = Ebullioscopic point, Kf = cryoscopic constant |$$

marks]

(b)	(i)	Outline the main differences between Henry's law and Raout's law	[3 marks]
	(ii)	Consider a lake that is in normal atmospheric condition. Determine the	solubility
		of O_2 (g) at 25°C temperature and 1 atm atmospheric pressure of	considering
the vapor pressure of water in the atmospheric as 0.02		vapor pressure of water in the atmospheric as 0.0313 atm. Norr	nal air is
comp	osed	of 21% of $O_2(g)$	

Henry slaw constant of oxygen at $25 \circ C = 1.3 \times 10^{-3} \text{ mol } L^{-1} \text{ atm}^{-1}$

[1 mark]

[2

(iii) Draw a labeled diagram showing the application of Raoult's law for a gaseous mixture composed of X and Y gases $[2^{1/2}]$

marks]

(iv) Calculate the vapour pressure of a solution made by dissolving 50.0g $CaCl_2$,

 $C_6 H_{12} O_6$, in 500g of water. The vapour pressure of pure water is 47.1

torr at 37°C

marks]

 Explain why a drip intravenous administration of fluids is made of a solution of NaCl at a particular concentration rather than pure water

[1 mark]

(iii)	Calculate the osmotic pressure of a solution of 1.0g of glucose	$\left(\boldsymbol{C}_{6}\boldsymbol{H}_{12}\boldsymbol{O}_{6}\right)$	in
	1500ml of water at 37°C		[1½

marks]

 (iv) Briefly explain various methods which are possible to ensure a patient receives enough oxygen during surgery and also state with reasons the method
which is the most practical [1¹/₂

marks]

(v) The Henry's law constant for N₂(g) at 298K is $6.8 \times 10^{-4} mol L^{-1} atm^{-1}$. A diver descends to a depth where the pressure is 5 atm. If the divers body contains about 5L of blood, calculate the maximum amount of nitrogen gas dissolved in the divers blood at 1 atm and at 5 atm.

Assume solubility of nitrogen \in water \land blood [& be the same] [1¹/₂ marks]

QUESTION FOUR (20 MARKS)

(a) (i)	(i) A solution containing 0.684 gm of cane sugar in 100gm of water freezes at				
	-0.037° C while a solution containing 0.585 gm of NaCl in 100gm of				
water freezes at -0.342°C. Calculate Kf (cryoscopy constant), i (Van't H					
Factor) and	% dissociation of NaCl. [Cane sugar = $C_{12}H_{22}O_{11}$]				
[2 marks]				
(ii)	An organic acid (molar mass = 60) associates in benzene to form a dimer when				
	1.66 gm of the acid is dissolved in 100g benzene, the boiling point of				
benzene is	raised by 0.36°C. Calculate the Van't Hoff factor and the degree of				
association o	f the acid in benzene.				
$\left[K_{b}\left(Ebullioscopic constant\right)=2.6 kg Kmol^{-1}\right]$					

(iii) A solution of KI is isotonic with a 0.01M solution of I_2 at 27°c. When equal volume of two solutions were mixed together, the Osmotic pressure Page **5** of **6**

 $[1\frac{1}{2} \text{ marks}]$

dropped by	18.5% of that of the individual solutions. Calculate the percentage					
of conversion	of $I^{\dot{c}}$	to I_3^{i}	. Assume that the solution behave ic	leally and		
the salts are completely		diss	sociated.			
[5½ r	narks]					
(b) (i) State the principal difference between congruent and incongruent phase transformation						
[1 mark]	[1 mark]					
(ii) List six merits	and five	demerits of	of phase rule	$[3\frac{1}{2} \text{ marks}]$		
(iii) Write short no	(iii) Write short notes on the phase diagram of the magnesium zinc system [5 marks]					
(c) An immiscible liquid	An immiscible liquid A when steam distilled with water gave a distillate of 0.2 dm^3					
which contained 0.05	which contained 0.0572 dm ³ of A. the observed boiling point for the distillation was					
98.2°C and the atmos	98.2°C and the atmospheric pressure was 758 mm Hg. The vapour pressure of water at					
98.2°C was 712 mm	98.2°C was 712 mm Hg. The relative density of the liquid was found to be 1.83.					
Calculate the molar m	Calculate the molar mass of the unknown liquid. $[1\frac{1}{2} marks]$					
