

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION SCIENCE/ARTS; BACHELORS OF SCIENCE GENERAL, BACHELORS OF ARTS(MATHS-ECONS)

MATH 304: COMPLEX ANALYSIS

STREAMS: ```AS ABOVE"`` Y3S2

TIME: 2 HOURS
11.30 A.M - 1.30 P.M

DAY/DATE: FRIDAY 12/04/2019

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

a) Determine the four roots of the complex number

$$
z=2-2 i
$$

b) Evaluate the limits of the following functions

$$
\lim _{z \rightarrow \pi} \frac{\sin z}{\pi-z}
$$

i.

$$
\lim _{z \rightarrow i} \frac{e^{\pi z}+1}{z^{2}+1}
$$

ii.

$$
\cos z=-3
$$

c) Solve the equation
(2 marks)
(2 marks)
(4 marks)
d) Evaluate the following complex integrals

$$
\int \frac{\sin z+\cos z}{(z-\pi)^{2}(z+4)} d z \quad|z|=3
$$

i. inside the circle C is the circle . 5 (5 marks) $\int \frac{e^{2 i z}}{1+4 z^{2}} d z$
ii.
inside the region bounded by the circle
$\quad|z-2 i|=|z+2|$
e) Find the locus of the points z in the complex plane such that

$$
f(x, y)=2 y^{3}-6 x^{2} y+4 x^{2}-7 x y-4 y^{2}+3 x+4 y-4
$$

f) Show that the function is harmonic and $g(x, y) \quad h(z)=f(z)+i g(z)$
find its harmonic conjugate such that

QUESTION TWO (20 MARKS)

$$
w=\log z \quad z=x+i y
$$

a) i)Given , where show that
$\operatorname{Re}(w)=\frac{1}{2} \log \left(x^{2}+y^{2}\right) \quad \operatorname{Im}(z)=\tan ^{-1}\left(\frac{y}{x}\right)+2 k \pi ; k \in Z$ and

$$
\begin{equation*}
w=\log z \tag{4marks}
\end{equation*}
$$

(ii)Taking the principal value of w , show that the function satisfies the CauchyRiemann equations

$$
\log (1+i)+\log (1-i)
$$

(iii) Express in the form of the real and imaginary parts(4 marks)

$$
f(z)=x^{2}-y^{2}+i(2 x y+y)
$$

b) Show that the function is differentiable and find its derivative
(4 marks)

$$
u(r, \theta)=u(r \cos \theta, r \sin \theta) \quad \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{d r}+\frac{1}{r^{2}} \frac{\partial u}{\partial r}=0
$$

c) Prove that if
is analytic, then
. (Assume the polar form of Cauchy-Riemann equations)

QUESTION THREE(20 MARKS)

a) Without using the cauchy theorem, evaluate $\int_{c}^{a} \dot{z} d z$ from $z=0$ to $z=4+i$ along the curve

$$
z=0 \text { to } z=2 i \text { and the line from } z \quad i 2 i \text { to } 4+2 i
$$

marks)

$$
\frac{1}{2 \pi i} \oint_{c} \frac{e^{z t}}{z^{2}+1} d z
$$

$$
|z-i|=1
$$

b) Evaluate the integral
when \quad and C is the circle
c) State without proof the residue theorem and use it to evaluate the integral

$$
\begin{equation*}
\oint_{c} \frac{z^{2}+5}{z^{2}(z+3)^{3}\left(z^{2}+4\right)} d z \quad \quad|z-2 i|=3 \tag{10marks}
\end{equation*}
$$

QUESTION FOUR (20 MARKS)

a) Prove that if a limit of a complex valued function exists, then it is unique
(6 marks)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1} z^{2 n-1}}{(2 n-1)!}
$$

b) Determine the region and the radius of convergence of the series

$$
\sin ^{-1} z=-i \log \left[i z+\left(1-z^{2}\right)^{\frac{1}{2}}\right.
$$

c) Show that

$$
f(z)=x^{3} \sin y-3 x y^{2}+i\left(3 x^{2} y-y^{3} \cos 2 x\right)
$$

d) Verify that the function is not analytic
(4 marks)

QUESTION FIVE (20 MARKS)

a) Differentiate isolated, non-isolated singularities and essential singularity using an appropriate example in each case.

$$
f(z)=\frac{1}{z^{2}-4 z+3} \quad|z-4|<1
$$

b) Expand the function about the circle

$$
f(z)=\frac{1}{1+z^{2}} \quad z=0 \quad z=i
$$

c) By expanding the function about and , explain the difference between the two expansions

