MATH 304

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION SCIENCE/ARTS; BACHELORS OF SCIENCE GENERAL, BACHELORS OF ARTS(MATHS-ECONS)

MATH 304: COMPLEX ANALYSIS

STREAMS: ````AS ABOVE```` Y3S2

TIME: 2 HOURS

11.30 A.M – 1.30 P.M

DAY/DATE: FRIDAY 12/04/2019

INSTRUCTIONS:

- Answer question **ONE** and **TWO** other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

a) b)	<i>z</i> Determine the four roots of the complex number Evaluate the limits of the following functions	$= 2 - 2i \tag{4 marks}$
ŕ	$\lim_{z \to z} \frac{\sin z}{2}$	
	i. $\pi - z$	(2 marks)
	$\lim_{z \to i} \frac{e^{\pi z} + 1}{2}$	
	$z^2 + 1$ ii.	(2 marks)
c) d)	$\cos z = -3$ Solve the equation Evaluate the following complex integrals	(4 marks)

MATH 304

$$\int \frac{\sin z + \cos z}{(z - \pi)^2 (z + 4)} dz$$
inside the circle C is the circle $.5$ (5 marks)

$$\int \frac{e^{2iz}}{1 + 4z^2} dz$$

$$|z| = 1$$
ii. inside the region bounded by the circle $.5$ (5 marks)

$$\int \frac{e^{2iz}}{1 + 4z^2} dz$$

$$|z| = 1$$
ii. inside the region bounded by the circle $.5$ (5 marks)

$$|z - 2i| = |z + 2|$$
e) Find the locus of the points z in the complex plane such that

$$f(x, y) = 2y^3 - 6x^2y + 4x^2 - 7xy - 4y^2 + 3x + 4y - 4$$
f) Show that the function $g(x, y)$
find its harmonic conjugate such that (5 marks)
OUESTION TWO (20 MARKS)
QUESTION TWO (20 MARKS)
a) i)Given $\frac{1}{2} \log(x^2 + y^2)$ $\operatorname{Im}(z) = \tan^{-1}(\frac{y}{x}) + 2k\pi; k \in \mathbb{Z}$
and (4 marks)
(ii)Taking the principal value of w , show that the function (4 marks)
 $bg(1 + i) + bg(1 - i)$
(iii) Express in the form of the real and imaginary parts(4 marks)
 $f(z) = x^2 - y^2 + i(2xy + y)$
b) Show that the function (4 marks)
 $u(r, \theta) = u(r \cos \theta, r \sin \theta)$
c) Prove that if
the polar form of Cauchy-Riemann equations) (4 marks)
QUESTION THREE(20 MARKS)
a) Without using the cauchy theorem, evaluate $\int_{c}^{1} \frac{\dot{z}}{c} dz$ from $z=0$ to $z=4+i$ along the curve $z=0$ to $z=2i$ and the line from z $i2i$ to $4+2i$ (5 marks)
 $\frac{1}{2\pi i} \frac{1}{e} \frac{e^{it}}{z^2 + 1} dz$ $i > 0$
b) Evaluate the integral when and C is the circle (5 marks)

c) State without proof the residue theorem and use it to evaluate the integral

$$\oint_{c} \frac{z^{2} + 5}{z^{2}(z+3)^{3}(z^{2}+4)} dz \qquad |z-2i| = 3$$
C; (10 marks)

QUESTION FOUR (20 MARKS)

a) Prove that if a limit of a complex valued function exists, then it is unique (6 marks) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} z^{2n-1}}{(2n-1)!}$

b) Determine the region and the radius of convergence of the series (6 marks) $\frac{1}{2}$

sin⁻¹
$$z = -i \log[iz + (1 - z^2)^2]$$

c) Show that

$$f(z) = x^{3} \sin y - 3xy^{2} + i(3x^{2}y - y^{3} \cos 2x)$$

d) Verify that the function

(4 marks)

is not analytic

QUESTION FIVE (20 MARKS)

a) Differentiate isolated, non-isolated singularities and essential singularity using an appropriate example in each case. (6 marks)

b) Expand the function

$$f(z) = \frac{1}{z^2 - 4z + 3} \qquad |z - 4| < 1$$

$$f(z) = \frac{1}{1 + z^2} \qquad z = 0 \qquad z = i$$
(7 marks)

$$f(z) = \frac{1}{1 + z^2} \qquad z = 0 \qquad z = i$$
(7 marks)
(7 marks)